
Version 2.5

The Polynomial Toolbox for MATLAB

Upgrade Information for Version 2.5

February, 2001

PolyX, Ltd
E-mailinfo@polyx.com

Support support@polyx.com

Sales sales@polyx.com
Web www.polyx.com

Tel. +420-2-66052314

Fax +420-2-6884554
Jarni 4, Prague 6, 16000

Czech Republic

Polynomial Toolbox Manual

© COPYRIGHT 2001 by PolyX, Ltd.
The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agree-
ment. No part of this manual may be photocopied or reproduced in any form with-
out prior written consent from PolyX, Ltd.

Printing history: February 2001. First printing.

Contents

Introduction
How to use this document
References to other documents
New installation instructions
Upgrading instructions
Documentation
A note for SIMULINK 3 users on Windows platforms
Compatibility with MATLAB version 6

What is New in Version 2.5?
Overview
Bug fixes
Improved algorithms and other internal changes
New display formats
New functions
Miscellaneous updates and modifications

New Functions in Version 2.5 of the Polynomial Toolbox
clements1

complete
dssh2
dssreg
gare
h2
jury
pdisp
pformat rootr, pformat rootc
pol2tex
psseig
psslqr
sarea, sareaplot
sim2lmf, sim2rmf
spherplot
tsyp
vset, vsetplot

 Introduction

 How to use this document

Introduction
This document highlights the new features of Version 2.5 of the Polynomial Tool-
box for MATLAB

How to use this document

If you are upgrading to Version 2.5
of the Polynomial Toolbox from …

Then read ...

Polynomial Toolbox Version 2.0 All sections of the present document.

Polynomial Toolbox Version 1.4 or1.5
for Matlab 4

The complete documentation of Ver-
sion 2 and then all sections of the
present document. It may also be
necessary to update your MATLAB
knowledge.

References to other documents

Throughout this document there are references to the Manual and the Commands
volumes of Version 2.0 of the Polynomial Toolbox.

 Introduction

 New installation instructions

New installation instructions

The Polynomial Toolbox 2.5 may be installed in the following simple steps.
• Delete any existing Polynomial Toolbox Version 2.0 (the existing folder

...\polynomial and its contents).
• Copy the whole folder \polynomial including all its contents from the

Polynomial Toolbox CD-ROM Version 2.5 to your PC, preferably next to
other MATLAB toolboxes that all are placed in the folder
...\MATLABR12\toolbox or ...\MATLABR11\toolbox or
...\MATLAB\toolbox.

• Add the folder ...\polynomial to your MATLAB path (for instance by using
the MATLAB Path Browser).

• If you use version 2 of SIMULINK then replace the file ...\polynomial\
polblock.mdl, residing in the main Polynomial Toolbox directory, by the
file ...\polynomial\simulink2\polblock.mdl. The current version
of SIMULINK can be checked by typing “ver simulink” in the MATLAB
main window.

• You are recommended to add a new line to your startup.m file containing
the command PINIT. With this modification the Polynomial Toolbox is
automatically initialized at the beginning of every MATLAB session. If you do
not do this then you will have to type PINIT manually each time you start a
Polynomial Toolbox session.

• When using the Polynomial Toolbox for the first time after installation you will
be asked to provide your personal license number.

Windows plat-
forms

 Introduction

 New installation instructions

• The standard configuration of the Polynomial Toolbox contains an Acrobat
Reader placed in the folder ...\polynomial\Pdf-files\Acrobat
4.0, which guarantees easy use of the on-line documentation by the POLD-
ESK command. This configuration requires no action during the installation
and it is recommended for most users. For more details on using the on-line
documentation see the section Documentation.

• Delete any existing Polynomial Toolbox Version 2.0 (the existing directory
.../polynomial and its contents).

• Copy the whole directory /polynomial including all its contents from the Poly-
nomial Toolbox CD-ROM Version 2.5 to your system, preferably next to the
other MATLAB toolboxes that all are placed in the directory
.../MATLABR12/ toolbox or .../MATLABR11/toolbox or
.../MATLAB/toolbox.

• Add the directory .../polynomial to your MATLAB path.

• If you use version 2 of SIMULINK then replace the file ...polynomial/
polblock.mdl, residing in the main Polynomial Toolbox directory, by the
file .../polynomial/simulink2/polblock.mdl. The current version
of SIMULINK may be checked by typing “ver simulink” in the MATLAB
main window.

• You are recommended to add a new line to your startup.m file containing
the command PINIT. With this modification the Polynomial Toolbox is
automatically initialized at the beginning of every MATLAB session. If you do
not do this then you will have to type PINIT manually each time you start a
new Polynomial Toolbox session.

UNIX platforms

 Introduction

 Upgrading instructions

• When using the Polynomial Toolbox for the first time after installation you will
be asked to provide your personal license number.

• To access the Polynomial Toolbox on-line documentation by the command
POLDESK your UNIX system is supposed to run Acrobat Reader by the usual
command “acroread.” If this is not the case then you must create such an
alias, or ask your system administrator for help. For more details on using
the on-line documentation see the section Documentation.

Upgrading instructions

Older versions of the Polynomial Toolbox 2.x may be upgraded to Version 2.5 by
executing the following steps.

• Make sure that your current folder ...\polynomial and all its contents are
not read-only. You can check this by right-clicking a few files and viewing the
properties sheet. To disable the read-only attribute of all files and folders in
the Polynomial Toolbox right-click the top level Polynomial Toolbox folder
...\ polynomial and open the properties sheet. Uncheck the box “Read-
only” and click on OK. In some versions of Windows you can now select the
option “Apply changes to this folder, subfolders and files” and again click on
OK. If this option is not available then repeat the procedure for all subfolders
of ...\ polynomial. Alternatively, you may open a DOS-box, change to
the folder ...\ polynomial, and type the command “attrib -r *.*
/s /d” to disable the read-only attribute of all files and folders in the Poly-
nomial Toolbox.

Windows plat-
forms

 Introduction

 Upgrading instructions

• Copy the entire contents of the folder upgrade\polynomial including all
subfolders from the Polynomial Toolbox CD-ROM Version 2.5 to your PC
over the contents of the existing folder ...\polynomial.

• If you still use version 2 of SIMULINK then replace the file
...\polynomial\ polblock.mdl, residing in the main Polynomial Tool-
box directory, with the file
...\polynomial\simulink2\polblock.mdl. You may check the cur-
rent version of SIMULINK by typing “ver simulink” in the MATLAB main
window.

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder
...\polynomial including its contents) and then install Version 2.5 following the
“New installation instructions.” In this case you will be asked to provide your per-
sonal license number.

• Make sure that your current directory .../polynomial and all its contents
are write enabled. Check this by moving to the directory .../polynomial,
typing “ll” and inspecting the w flag. If the w flag is not present in the user
access persissions for all files then type “chmod u+w *” to set it. Repeat
this for all sub-directories.

• Copy the entire contents of the directory upgrade/polynomial including
all subfolders from the Polynomial Toolbox CD-ROM Version 2.5 to your
computer over the contents of the existing directory .../polynomial.

• If you still use version 2 of SIMULINK then replace the file
.../polynomial/ polblock.mdl, residing in the main Polynomial Tool-
box directory, with the file

UNIX platforms

 Introduction

 Documentation

.../polynomial/simulink2/polblock.mdl. You may check the cur-
rent version of SIMULINK by typing "ver simulink" in the MATLAB main
window.

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder
...\polynomial including its contents) and then install Version 2.5 following the
“New installation instructions.” In this case you will be asked to provide your per-
sonal license number.

Documentation

Three document volumes are provided with the Polynomial Toolbox: Manual, Com-
mands, and Version 2.5 Upgrade Information. The printed Manual and Version 2.5
Upgrade Information volumes are delivered with the Polynomial Toolbox CD-ROM.
The printed Commands volume may be purchased separately (see the PolyX
website or contact info@polyx.cz).
Ready-to-print electronic versions of the Manual, Commands and Version 2.5 Up-
grade Information are also available. They may be found in
...\polynomial\Pdf-files in the files manual.pdf, commands.pdf and
upgradeinfo25.pdf. The files are all readable by Acrobat Reader. Users are
welcome to print these files for their own use but should not distribute them any
further. For more copyright details see the License Agreement.

On-line electronic versions of the Manual, Commands and Version 2.5 Upgrade
Information are also provided. They are located in the folder
...\polynomial\Pdf-files in the files OnLineManual.pdf, OnLine-
Commands.pdf and OnLineUpgradeInfo25.pdf. They are normally accessed

 Introduction

 A note for SIMULINK 3 users on Windows platforms

by the Polynomial Toolbox command POLDESK but users are free to create other
arrangements.

On Windows Platforms, POLDESK by default uses Acrobat Reader located in the
Polynomial Toolbox folder ...\polynomial\Pdf-files\Acrobat 4.0 . This
configuration is generally recommended. If an experienced user wishes to employ
a different version of Acrobat Reader located elsewhere then the entire folder
...\polynomial\Pdf-files\Acrobat 4.0 may simply be deleted. During
the next execution POLDESK will look for Acrobat Reader in the standard location
C:\Program Files\ Adobe\Acrobat 4.0\Reader\ AcroRd32.exe or will
ask the user to provide a valid path name.

On UNIX Platforms, POLDESK by default calls the command “acroread” that typi-
cally runs Acrobat Reader on a UNIX system. If this alias is not recognized then the
user or a system administrator may create such an alias.

Alternatively, the user of each system may type POLDESK RECOVER. This opens a
dialogue window where the user can type in a valid pathname.

A note for SIMULINK 3 users on Windows platforms

Under the MS Windows operating systems the way the “simulink” command is
processed differs slightly in versions 2 and 3 or 4 of SIMULINK. The instructions in
the Polynomial Toolbox 2.0 Manual (pages 83–84) refer to version 2 of SIMULINK.
If you use SIMULINK 3 or 4 under Windows then please proceed in one of the two
following ways:

1. Type

 Introduction

 Compatibility with Matlab version 6

 » simulink

to open the Simulink Library browser. The Polynomial Toolbox 2.0 Simulink
library now is directly accessible within the browser along with the other
Simulink libraries.

2. Type
 » simulink3

to open the Simulink Library window. Follow the instructions in the Polyno-
mial Toolbox 2.0 Manual, pages 83–84.

 For further information consult the SIMULINK manual (Using Simulink, Version 3).

Compatibility with MATLAB version 6

The Polynomial Toolbox 2.5 works well with the MATLAB Release 12 products MAT-
LAB 6 and Simulink 4. In fact, some functions are up to two times faster with MAT-
LAB 6 than before.

MATLAB 6 users will see the Polynomial Toolbox icon in their MATLAB Launch Pad
window among the other MATLAB toolboxes they may have. The Polynomial Tool-
box help functions, demos, Polynomial Matrix Editor and PolyX web site may be
directly accessed from the Launch Pad window.
Clicking a POL object icon in the MATLAB Workspace window does not open the
object in an array editor. We hope to fix this shortcoming in the future but the re-
lated MATLAB code is not open for us currently. Instead, type PME in the command
window and open the object in the Polynomial Matrix Editor.

 What is New in Version 2.5?

 Overview

What is New in Version 2.5?
Overview

Version 2.5 features the following enhancements.

• Bug fixes to Version 2.0

• Improved algorithms and other internal changes

• New display formats

• Several new functions

• Miscellaneous updates and modifications

Bug fixes

Version 2.5 includes a number of bug fixes. In particular, it includes all patches that
were made available on the PolyX website since the release of Version 2.0.

Improved algorithms and other internal changes

Several algorithms have been improved in Version 2.5 to reflect recent research
achievements. In particular, the linear polynomial matrix equation solvers axb,
axbyc, xab, xaybc, and axxa2b perform faster, in particular for large matrices.
These modifications have no impact on the way the functions are used and hence

 What is New in Version 2.5?

 New display formats

require no attention on the part of the user. In particular, no changes were made in
the numbers of input and output arguments and their order.

New display formats

Version 2.5 includes several additional display formats for polynomial matrices.

pformat rootr Format a polynomial or polynomial entry as a product of
real first- and second-order factors

pformat rootc Format a polynomial or polynomial entry as a product of
first-order factors

pdisp Display a polynomial matrix without printing the name

New functions

Several new functions were added in Version 2.5.
The new routine pol2tex is a great help for authors who use LaTeX.

pol2tex Formats a polynomial matrix for use in a LaTeX document

Version 2.5 offers two new solutions for the standard 2H problem under quite gen-
eral conditions.

h2 Polynomial solution of the standard 2H optimization prob-
l

LaTeX format-
ting of polyno-
mial matrices

H2 optimization

 What is New in Version 2.5?

 New functions

lem

dssh2 Descriptor solution of the standard 2H optimization prob-
lem

Version 2.5 adds the following new macros to the already impressive list of routines
for testing the stability of interval polynomials

jury Create the Jury matrix corresponding to a polynomial

sarea, sareaplot Robust stability area for polynomials with parametric un-
certainties

spherplot Plot the value set ellipses for a spherical polynomial family

tsyp Use the Tsypkin-Polyak function to determine the ∞ ro-
bustness margin for a continuous interval polynomial

vset,vsetplot Value set of parametric polynomial. A tool for robust stabil-
ity testing via Zero Exclusion Condition

Version 2.5 includes two polynomial methods for state space systems

psseig Polynomial approach to eigenstructure assignment for state-
space system

psslqr Polynomial approach to linear-quadratic regulator design for
state-space system

Interval poly-
nomials

State space
systems

 What is New in Version 2.5?

 New functions

Two brand new routines allow the automatic conversion of SIMULINK block dia-
grams to LMF and RMF descriptions.

sim2lmf Simulink-to-LMF description of a dynamic system

sim2rmf Simulink-to-RMF description of a dynamic system

Version 2.5 includes two upgrades of existing numerical utilities and a new numeri-
cal function.

clements1 Conversion to Clements standard form (upgrade of clements)

dssreg “Regularizes” a standard descriptor plant (upgrade)

gare Solution of the generalized algebraic Riccati equation

The function complete is a new addition to the collection of polynomial matrix
functions.

complete Complete a non-square polynomial matrix to a square unimodu-
lar matrix

Three new text based demos have been included in Version 2.5. They are self-
explanatory and no documentation is available. Simply type the name of the demo
in the command line.

poldemo This demo reviews several of the functions and operations de-
fined in the Polynomial Toolbox for polynomials and polynomial
matrices

Simulink rou-
tines

Numerical rou-
tines

Polynomial ma-
trix functions

Demos and
shows

 What is New in Version 2.5?

 Miscellaneous updates and modifications

poldemodebe Design of a dead-beat compensator

poldemodet Comparison between numerical and symbolic computation of
determinant of a polynomial matrix. This demo requires the Sym-
bolic Toolbox to be installed

In addition two “shows” have been prepared that run in a graphical interface. Enter
the name of the show in the command line to view the show. No additional
documentation is available.

poltutorshow Introduction into the basic operations with polynomials and poly-
nomial matrices. This is a graphical version of the text based
demo poldemo

polrobustshow Overview of parametric robust control tools

Miscellaneous updates and modifications

This section lists modifications in various macros that were made after Version 2.0
was released. The changes leave the macros fully compatible with Version 2.0 and
are all reflected in the on-line help.

There are a number of improvements in axxab.

• By default, the macro axxab now returns a solution with triangular leading
coefficient matrix (in the continuous-time case) or triangular constant coef-

axxab

 What is New in Version 2.5?

 Miscellaneous updates and modifications

ficient matrix (in the discrete-time case). The option 'tri' is no longer effec-
tive but still valid for compatibility reasons.

• By default, the macro now uses the sparse linear system solver and per-
forms no preliminary rank check.

• The new option ′chk′ turns the preliminary rank check on and activates
MATLAB’s built-in standard (non-sparse) linear system solver.

The macro cgivens1 differs from the implementation in Version 2.5 by the intro-
duction of an optional tolerance tol. The default value of tol is 0. In the form

[c,s] = cgivens1(x,y,tol)

the routine sets x and y equal to zero if their magnitude is less than tol.

Unimodular polynomial matrices and constant non-polynomial matrices are now
considered to be stable, and not unstable as in Version 2.0.

The macro prand has two new options.

• The option ′mon′ generates a monic polynomial matrix.

• The option ′pos′ generates a polynomial matrix with the required number
of zeros. In particular, the call
 P = prand(degP,I,'pos'[,zeros_vector])
generates a square I-by-I polynomial matrix P but now degP means the
required number of zeros, including multiplicities. Some zeros can be fixed
a priori by the optional vector zeros_vector. Complex conjugate com-
plex parts are added if necessary.

The function call

cgivens1

isstable

prand

reverse

 What is New in Version 2.5?

 Miscellaneous updates and modifications

reverse(P)

with the single input argument P, reverses the order of the coefficients. Thus, if

= + + +0 1() n
nP s P P s P s

then

Q = reverse(P)

returns

−= + + +1 0() n
n nQ s P P s P s

Zeroing management has been changed in this macro. Now, no zeroing is per-
formed by default. However, an optional tolerance tol may be passed to the
macro in one of the forms

P = root2pol(Z,K,tol)

or

P = root2pol(Z,K,tol,var)

In this case all coefficients of the resulting polynomial that are less than tol times
the largest coefficient are neglected. Note that if the tolerance argument is included
both the input argument Z and K needs to be present.
The on-line help has been modified to emphasize that the routine does not work
with complex polynomials.

root2pol

stabint

 New Functions in Version 2.5 of the Polynomial Toolbox

 Miscellaneous updates and modifications

New Functions in Version 2.5 of the
Polynomial Toolbox

This chapter documents the new functions of Version 2.5 of the Polynomial Tool-
box.

 New Functions in Version 2.5 of the Polynomial Toolbox

 clements1

clements1

Transformation of a para-Hermitian pencil to Clements form

[C,u,p] = clements1(P)

[C,u,p] = clements1(P,q)

[C,u,p] = clements1(P,q,tol)

The command
[C,u,p] = clements1(P,q,tol)

transforms the para-Hermitian nonsingular real pencil P(s) = sE + A to Clements
standard form C according to

C(s) = u(sE + A)uT = se + a
The matrix u is orthogonal. The pencil C has the form

 +

= + = +

− + − + +

1 1

2 3 3

1 1 3 3 4 4

0 0
() 0

T T T T

se a
C s se a a se a

se a se a se a

The pencil +1 1se a has size ×p p and its finite roots have nonnegative real parts.
The matrix 2a is diagonal with the diagonal entries in order of increasing value.
If the optional input argument q is not present then 2a has the largest possible
size. If q is present and the largest possible size of 2a is greater than ×q q then –

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 clements1

if possible – the size of 2a is reduced to ×q q . Setting q = Inf has the same effect
as omitting the second input argument.

The optional input parameter tol defines a relative tolerance with default value
1e-10. It is used to test whether eigenvalues of the pencil are zero, have zero
imaginary part, or are infinite, and for other tests. For compatibility with an earlier
version of the macro a tolerance parameter of the form [tol1 tol2] is also
accepted but only the first entry is used.

This version is backward compatible with the earlier version (named clement in
Version 2.0) but also handles singular pencils and pencils with roots on the imagi-
nary axis. Because of certain modifications in the algorithm clements and
clements1 generally do not produce the same output for the same input.
We consider the computation of the Clements form of the para-Hermitian pencil

−
 − − =
 − −

100 0.01 0
0.01 0.01 0 1

()
0 1 0

0 1 0 0

s

P s
s

We first input this matrix as

P = [100 -0.01 s 0; -0.01 -0.01 0 1;-s 0 -1 0;0 1 0 0];

and next compute its Clements form:
[C,u,p] = clements(P);

We have

p, C = pzer(C)

Compatibility

Example

 New Functions in Version 2.5 of the Polynomial Toolbox

 clements1

p =

1

C =

0 0 0 -10 + s

0 -1 0 -3.5e-005 -

0.0007s

0 0 1 -0.014 +

0.00071s

-10 - s -3.5e-005 + 0.0007s -0.014 - 0.00071s 99

We see that

−
+ = − =

1 1 2

1 0
10,

0 1
se a s a

Next we attempt to reduce 2a to the smallest possible size:

[C,u,p] = clements(P,0);

p, C = pzer(C)
p =

2

Polynomial matrix in s: 4-by-4, degree: 1

C =

0 0 0 -10 + s

 New Functions in Version 2.5 of the Polynomial Toolbox

 clements1

0 0 1 -0.01 + 5e-
006s

0 1 -0.01 -0.0099 +
0.001s

-10 - s -0.01 - 5e-006s -0.0099 - 0.001s 99
We now have

−

−
+ =

× −
1 1 6

0 10

1 5 10 0.01

s
se a

s

while 2a is the empty matrix.

The algorithm is described in Clements (1993) and in slightly more detail in Kwak-
ernaak (1998). The extension to roots on the imaginary axis is described in Kwak-
ernaak (2000).

Clements, D. J. (1993), “Rational spectral factorization using state-space methods.”
Systems & Control Letters, vol. 20, pp. 335–343.

Kwakernaak, H. (1998), “Frequency domain solution of the ∞H problem for de-
scriptor systems.” In Y. Yamamoto and S. Hara, Eds., Learning, Control and Hy-
brid Systems, Lecture Notes in Control and Information Sciences, vol. 241,
Springer, London, etc.

H. Kwakernaak (2000), “A Descriptor Algorithm for the Spectral Factorization of
Polynomial Matrices.” Third IFAC Symposium on Robust Control System Design
ROCOND 2000, Prague, June 21–23, 2000.

The macro displays error messages in the following situations:

Algorithm

References

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 clements1

• The input matrix is not a square pencil

• The input matrix is not real

• The input pencil is not para-Hermitian

• An eigenvalue on the imaginary axis cannot be deflated
A warning message is issued if the relative residue exceeds 1e-6. The “relative
residue” is the norm of the juxtaposition of the (1,1) and (1,2) blocks of C divided by
the norm of P.

dsshinf ∞H -suboptimal compensators for descriptor systems

gare Solution of generalized algebraic Riccati equations

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 complete

complete

Complete a nonsquare polynomial matrix to a unimodular matrix

[U,V] = complete(Q,[tol])

If Q is a tall polynomial matrix then the command

[U,V] = complete(Q)

produces a unimodular matrix U of the form U = [Q R]. If Q is wide then the uni-
modular matrix U has the form U = [Q; R]. V is the inverse of U.

If Q does not have full rank or is not prime then no unimodular matrix U exists and
an error message follows. Also if Q is square non-unimodular an error is reported.

The optional input argument tol is the tolerance used for the row or column reduc-
tion of Q that is part of the algorithm.

This is a new function in the Polynomial Toolbox.

A tall polynomial matrix Q with column degrees 2 and 1 and dimensions ×3 2 is
generated by the command

Q = prand([2 1],3,2)
Q =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s

Q is completed to a unimodular matrix U by typing

Purpose
Syntax
Description

Compatibility
Example

 New Functions in Version 2.5 of the Polynomial Toolbox

 complete

[U,V] = complete(Q);

U

U =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s 0.2 +
0.00074s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s 0.4 +
0.016s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s 1 + 0.036s
It may be verified that U is unimodular and that V is its inverse by successively
typing

det(U)

Constant polynomial matrix: 1-by-1

ans =

-0.73

U*V

Constant polynomial matrix: 3-by-3

ans =

1 0 0

0 1 0

0 0 1

 New Functions in Version 2.5 of the Polynomial Toolbox

 complete

Let Q be a full rank ×n k polynomial matrix, with >n k . We wish to find an
× −()n n k polynomial matrix R such that Q R is unimodular. Let U be a uni-

modular matrix which reduces Q to the extended row-reduced form

=
 0

oQ
UQ

If the ×k k matrix oQ is a constant matrix then it is nonsingular and the desired
unimodular completion exists. Otherwise, the completion does not exist. The row
reduction algorithm also yields the inverse −= 1V U of U. Redefine

−
= =

1 00: , :
00
oo QQU U V V

II

and partition = 1 2V V V . Then

= =

2
0

,
0
I

UQ UV
I

Hence, the desired completion is

 2Q V

and its inverse is U.

If Q is not tall but wide then the algorithm is applied to the transpose of Q.
The macro complete issues error messages if

 The input matrix is square non-unimodular

Algorithm

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 complete

 The input matrix cannot be completed to a unimodular matrix because it is
not prime

 The input matrix does not have full rank

colred, rowred Reduction to column or row reduced form

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

dssh2

Descriptor solution of the H2 problem

[Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

The command
 [Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

solves the H2 optimization problem for the standard plant
−= − +1() ()G s C sE A B D

with nmeas measured outputs and ncon control inputs. The optimal compensator
is given by

−= − +1() ()k k k k kK s C sE A B D
The optional parameter tol is a tolerance with default value 1e-10.

Conditions on the input data: If D is partitioned as

=

11 12

21 22

D D
D

D D

where 12D has ncon columns and 21D has nmeas rows, then 12D needs to have
full column rank and 21D full row rank, and 22D should be the zero matrix. Use the
command dssreg with the option 'D22' to “regularize” the system if these condi-
tions are not met.

This function is new in the Polynomial Toolbox.

Purpose
Syntax
Description

Compatibility

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

2H design problem
Consider the block diagram of Fig. 1. The plant is a MIMO system with transfer
matrix

 + =

 +

2
1 1

2()
10

2

ssP s

s

The controlled output is

=

11

12

z
z

z

The measured output

=

1

2

y
y

y

is corrupted by colored measurement noise generated by the two shaping
filters with transfer functions

Example

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

Fig. 1. Design problem

+
1

1 /10s
 and

+
1

1 / 20s

The second component of the disturbance

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

=

1

2

v
v

v

is passed through a shaping filter with transfer function 1/ s to ensure integrating
action on both input channels. The input

=

1

2

u
u

u

is weighted with dynamic weighting functions with transfer functions +1(1)c rs (to
ensure sufficient high-frequency roll-off of the compensator) and 2c s (both for
high-frequency roll-off and to allow integral control at the second input channel).

The generalized plant that defines the 2H problem is given by

 + +

 + +
 +

= =

+ + +

+ + +

2 2

11 12 1

21 22 2

2 2

1 1 1 10 0
(2) 2

1 10 0 0 0
(2) 2

() () 0 0 0 0 (1) 0
()

() () 0 0 0 0 0
1 1 1 1 10

(2) 1 /10 2
1 1 10 0 0

(2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

The transfer matrix may be entered in rational format, converted to a left polyno-
mial matrix fraction by the command rat2lmf and after this converted to descrip-
tor representation by the command lmf2dss:

c1 = 1; c2 = 1; r = 5;

Num = [1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1];

Den = [s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

1 s*(s+2) 1 1+s/20 1 s+2];

[N,D] = rat2lmf(Num,Den);

[a,b,c,d,e] = lmf2dss(N,D)

a =

Columns 1 through 7

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

0 1.0000 -1.7638 0 0 0
0

0 0 0 0 0 0
0

0 0 -2.0000 1.0000 0 0
0

0 0 0 0 0 0
0

0 0 0 0 -10.0000 0
0

0 0 -0.0000 0 0 -20.0000
0

0 0 0 0 0 0
1.0000

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

Columns 8 through 10

0 0 0

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1.0000 0 0

0 1.0000 0

0 0 1.0000

b =

0 0 0 0 0 0.3333

0.3333 0.3333 0 0 0.3333 0

0 0 0 0 0 0.3780

0 0.3780 0 0 0 0

0 0 -0.5754 0 0 0

0 0 0 -0.5769 0 0

0 0 0 0 0 0

0 0 0 0 5.0000 0

0 0 0 0 0 0

0 0 0 0 0 1.0000

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

c =

Columns 1 through 7

3.0000 0 0 0 0 0
0

0 0 2.6458 0 0 0
0

0 0 0 0 0 0 -
1.0000

0 0 0 0 0 0
0

-3.0000 0 0 0 17.3781 0
0

0 0 -2.6458 0 0 34.6699
0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

0 -1.0000 0

0 0 0

0 0 0

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

d =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

e =

1 0 0 0 0 0 0 0 0
0

0 1 0 0 0 0 0 0 0
0

0 0 1 0 0 0 0 0 0
0

0 0 0 1 0 0 0 0 0
0

0 0 0 0 1 0 0 0 0
0

0 0 0 0 0 1 0 0 0
0

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

0 0 0 0 0 0 0 1 0
0

0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0 0
0

The descriptor representation does not satisfy the regularity assumptions, This is
corrected with the help of the command

[a1,b1,c1,d1,e1] = dssreg(a,b,c,d,e,2,2,'D22');

Following this the solution of the 2H problem follows by typing

[yd,xd] = dss2rmf(ak,bk,ck,dk,ek);

We suppress the rather copious output. The compensator may be converted to
rational form by the commands

[Y,X] = dss2rmf(ak,bk,ck,dk,ek);
[NumK,DenK] = rmf2rat(Y,X);

The compensator is given by

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058
4.4 13 17 14 5.6 (4.4 13 17 14 5.6)

()
0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s
s s s s s s s s s s s

K s
s s s s s s s s
s s s s s

+
 + + + + +

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6)
s s

s s s s s s

The solution is obtained by a mixed state space and polynomial matrix solution
(Kwakernaak, 2000).

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust
Control Design,” Plenary paper, IFAC Symposium on Robust Control Design 2000,
21–23 June 2000, Prague, Czech Republic.
The macro dssh2 issues error messages if

 The input data have inconsistent dimensions

 The matrix D does not satisfy the regularity conditions
 The plant has unstable fixed poles

 The generalized plant has marginally stable fixed poles that cannot be
cancelled

 The closed-loop transfer matrix cannot be made strictly proper

dssreg Regularization of a descriptor system

h2 Polynomial solution of the standard 2H problem

gare Solution of Generalized Algebraic Riccati Equations

Algorithm

Reference

Diagnostics

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssh2

dsshinf ∞H suboptimal compensator for descriptor systems

mixeds Solution of a SISO ∞H mixed sensitivity problem

plqg Polynomial solution of a MIMO LQG problem

splqg Polynomial solution of a SISO LQG problem

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

dssreg

“Regularization” of a standard descriptor plant

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] =
dssreg(A,B,C,D,E,nmeas,ncon[,tol][,option1][,option2])

The commands

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon,tol)

transform the generalized plant

= +

= +

w
Ex Ax B

u

z w
Cx D

y u

where the dimension of y is nmeas and the dimension of u is ncon, into an equiva-
lent generalized plant

= +

= +

w
ex ax b

u

z w
cx d

y u

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

with
d = [d11 d12

d21 d22]
such that d12 has full column rank and d21 has full row rank. “Equivalent” means
that the two plants have the same transfer matrices.
The optional tolerance parameter tol is used in the various rank tests. It has the
default value 1e-12.
Two options may be included. The option 'D11' modifies the representation so
that the term with d11 is absent. The option 'D22' removes the term with d22.
In verbose mode the routine displays a relative error based on the largest of the
differences of the frequency response matrices of the transformed and the original
plant at the frequencies 1, 2, ..., 10.

This version of dssreg is backward compatible with the version of Version 2.0 of
the Toolbox. The only difference is that the options 'D11' and D22' have been
added.

In the Example section of the manual page for the Polynomial Toolbox command
dsshinf the descriptor representation of a generalized plant is derived. When
considering the subsystem

= +2 (1)z c rs u
two pseudo state variables are defined as = =3 4,x u x u , which leads to the
descriptor equations

Compatibility

Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

=
= − +

3 4

30
x x

x u

The output equation is rendered as
= + = +2 4(1)z c rs u crx cu

The output equation, however, equally well could be chosen as
= + = +2 3 4(1)z c rs u cx crx

This brings the generalized plant in the form

 = +

−

1 1

2 2

3 3

4 4

1 0 0 0 0 1 0 0 2 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1

x x
x x w
x x u
x x

E A B

 = + − −

1
1

2
2

3

4

1 0 0 0 1 0
0 0 0 0
1 0 0 0 1 0

x
z

x w
z c cr

x u
y

x
DC

For this plant we have

= = −

12 21
0

, 1
0

D D

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

so that 12D does not have full rank. We apply dssreg to this plant for c = 0.1, r =
0.1.

c = 0.1; r = 0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 c c*r; -1 0 0 0];

D = [1 0; 0 0; -1 0];

ncon = 1; nmeas = 1;
We now apply dssreg.

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

a =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 -1 0

b =

1.4142 0

1.0000 1.0000

0 1.0000

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

0 1.0000

c =

1.0000 0 0 0

0 0 0.1000 0.0100

-1.0000 0 0 0

d =

1.0000 0

0 0.0100

-1.0000 0

e =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

We now have

= = −

12 21
0

, 1
1

D D

so that the transformed plant is “regular.”

As a second example we consider the standard plant

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

= +

=

1 1

1
1

w
x x

u

z
x

y

for which neither 12D nor 21D has full rank. We obtain the following result.

E = 1; A = 1; B = [1 1]; C = [1; 1]; D = [0 0;0 0];

nmeas = 1; ncon = 1;

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

a =

1 0 0

0 1 0

0 0 1

b =

1 1

0 1

1 0

c =

1 1 0

1 0 1

d =

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

0 1

1 0

e =

1 0 0

0 0 0

0 0 0

Instead of a state representation of dimension 1 we now have a 3-dimensional
descriptor representation, which, however, is “regular.”

Finally, consider the system
= + = =, ,x u v z v y u

Accordingly, we let
» E

E =

1

» A

A =

0

» B

B =

1 1

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

» C

C =

0

0

» D

D =

1 0

0 1

We successively have

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1); length(a),d

ans =

3

d =

1 1

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11'); length(a),d

ans =

4

d =

0 1

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11','D22');
length(a),d

ans =

5

d =

0 1

1 0

First consider the case that 21D does not have full row rank.
Let the rows of the matrix N span the left null space of E, so that NE = 0. Then by
multiplying the descriptor equation = + +1 2Ex Ax B w B u on the left by N we obtain
the set of algebraic equations = + +1 20 NAx NB w NB u . By adding suitable linear
combinations of the rows of this set of equations to the rows of the output equation

= + +2 21 22y C x D w D u the rank of 21D may be increased without increasing the
dimension of the pseudo state x.

If after this operation 21D still does not have full row rank then we apply a suitable
transformation to the output equation = + +2 21 22y C x D w D u so that it takes the
form

= = + +

1 21 221211

2 22 2220
y C DD

y x w u
y C D

where 211D has full row rank. It is easy to construct a matrix 212D so that

Algorithm

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

211

212

D
D

has full row rank. Following this we redefine the output equation as

 ′= = + + +

1 21 211 221

2 22 212 222

0y C D D
y x x w u

y C D DI

where ′x is an additional component of the pseudo state. This component is ac-
counted for by adding the algebraic equation

′= + 2120 x D w
to the descriptor equation. This increases the dimension of the pseudo state, of
course.
If 12D does not have full rank then the procedure as described is applied to the
“dual” system.
If, say, 22D is nonzero then we use singular value decomposition to write

=22D USV , where S is square nonsingular. Adding the equation ′ =x SVu to the
descriptor equations we may now rewrite the equation for y as

′= + + = + +1 21 22 1 21y C x D v D u C x Ux D v
If needed, 11D is similarly removed.

The macro dssreg displays error messages in the following situations.

• The input parameters have inconsistent dimensions.

• 12D is not tall or 21D is not wide.

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 dssreg

• The relative error exceeds 1e-6. The relative error is computed on the basis of
the largest of the differences of the frequency responses of the system before
and after regularization at the frequencies 1, 2, …, 10.

In verbose mode the relative error is always reported.

dssrch ∞H optimization for a descriptor plant

dssmin dimension reduction of a descriptor system

dssh2 2H optimization of a descriptor system

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 gare

gare

Generalized algebraic Riccati equation

[X,F] = gare(A,B,C,D,E,Q,R,tol);

This routine computes the solution X of the generalized algebraic Riccati equation
−+ + − + + =

=

1() () 0T T T T T T T

T T
X A A X C QC X B C D R B X D C

X E E X

and the gain
−= +1()T TF R B X D C

such that the feedback law = −u Fx stabilizes the descriptor system

= +Ex Ax Bu
and makes the impulsive modes non-impulsive. Finite closed-loop poles on the
imaginary axis are allowed. If the descriptor system is not stabilizable or impulse
controllable then X is returned as a matrix filled with Infs. In this case F still has a
well-defined solution. The corresponding feedback law stabilizes the stabilizable
modes and makes the controllable impulsive modes non-impulsive.

The optional tolerance tol is used by the routine clements and also to test
whether the GARE has a finite solution. Its default value is 1e-12.

This function is new in the Polynomial Toolbox.
Let

Purpose
Syntax
Description

Compatibility
Example

 New Functions in Version 2.5 of the Polynomial Toolbox

 gare

= = =

= =

1 0 1 0 1
, ,

0 1 0 2 0
2 1 , 1

E A B

C D

= 1Q , = 1R . The system has an uncontrollable mode with eigenvalue 2. Accord-
ingly, we obtain

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

Inf Inf

Inf Inf

F =

2 0

» roots(s*E-A+B*F)

ans =

2.0000

-1.0000

On the other hand,

= = = −

= =

1 0 0 1 0
, ,

0 0 1 0 1
0 1 , 1

E A B

C D

is controllable. We now have

 New Functions in Version 2.5 of the Polynomial Toolbox

 gare

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

1.0e-015 *

0 0

-0.0754 -0.1601

F =

-0.0000 1.0000

» roots(s*E-A+B*F)

ans =

-1.0000
The algorithm for the solution of the GARE relies on transforming the associated
Hamiltonian pencil to Clements form (Kwakernaak, 2000).
Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust
Control Design,” Plenary paper, IFAC Symposium on Robust Control Design 2000,
21–23 June 2000, Prague, Czech Republic.

The macro gare issues error messages if the input data have inconsistent dimen-
sions.

clements Clements transformation of a matrix pencil

Algorithm

Reference

Diagnostics

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

h2

H2-optimization

[Y,X,clpoles,fixed] = H2(N,D,nmeas,ncon[,tol][,’check’])

Given a continuous-time generalized plant of the form

=

11 12

21 22

G Gz w
G Gy u

G

with G represented in the left coprime polynomial matrix fraction form −= 1G D N ,
the command

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas)

computes the compensator =u Ky in right polynomial matrix fraction form
−= 1K YX that minimizes the 2-norm 2H of the closed-loop transfer matrix

−= + − 1
11 12 22 21()H G G I KG KG

from v to z. The norm is defined by
∞

−∞

= −∫ ω ω ω
π

2
2

1 tr () ()
2

TH H j H j d

Purpose
Syntax
Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

Fig. 2 . Generalized plant

The input parameter ncon is the number of control inputs and nmeas is the num-
ber of measured outputs. The output parameter clpoles contains the (non-fixed)
closed-loop poles and fixed the fixed-plant poles.

In the optional forms

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol)

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,'check')

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol,'check')
the parameter tol is a tolerance. Its default value is 1e-8. If the option 'check' is
present then the routine checks whether the 2H optimization problem has a solu-
tion, and exits if no solution exists. If the option is not invoked then the routine pro-
duces a solution even if none exists. In the latter case the closed-loop transfer
matrix either has poles on the imaginary axis or is not strictly proper.

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

Nonproper generalized plants are allowed. Fixed open-loop poles (that is, uncon-
trollable or unobservable poles) cannot have strictly positive real parts but may be
located on the imaginary axis.

This function is new in the Polynomial Toolbox.

Example 1: 2H design problem
Consider the block diagram of Fig. 1. The plant is a MIMO system with transfer
matrix

 + =

 +

2
1 1

2()
10

2

ssP s

s

The controlled output is

=

11

12

z
z

z

The measured output

=

1

2

y
y

y

is corrupted by colored measurement noise generated by the two shaping filters
with transfer functions

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

Fig. 3. Design problem

+
1

1 /10s
 and

+
1

1 / 20s

The second component of the disturbance

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

=

1

2

v
v

v

is passed through a shaping filter with transfer function 1/ s to ensure integrating
action on both input channels. The input

=

1

2

u
u

u

is weighted with dynamic weighting functions with transfer functions +1(1)c rs (to
ensure sufficient high-frequency roll-off of the compensator) and 2c s (both for
high-frequency roll-off and to allow integral control at the second input channel).

The generalized plant that defines the 2H problem is given by

 + +

 + +
 +

= =

+ + +

+ + +

2 2

11 12 1

21 22 2

2 2

1 1 1 10 0
(2) 2

1 10 0 0 0
(2) 2

() () 0 0 0 0 (1) 0
()

() () 0 0 0 0 0
1 1 1 1 10

(2) 1 /10 2
1 1 10 0 0

(2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

The transfer matrix may be entered in rational format and then converted to a left
polynomial matrix fraction by the command rat2lmf:

c1 = 1; c2 = 1; r = 5;

Num = [1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1];

Den = [s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

1 s*(s+2) 1 1+s/20 1 s+2];

[N,D] = rat2lmf(Num,Den)

N =

0 0 0 0 0.2 + s 0

0 0 0 0 0 s

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

1 20 + s 0 0 0 20 +
s

The solution of the 2H problem follows by typing
[Y,X,clpoles,fixedpoles] = H2(N,D,2,2)

Y =

0.044 + 0.25s + 0.023s^2 0.014 + 0.042s +
0.0022s^2

0.54 + 0.4s + 0.04s^2 -0.3 - 0.15s - 0.0065s^2

X =

0.41 + s + 0.76s^2 + 0.27s^3 0.13 - 0.12s -
0.064s^2

-0.21 + 0.16s + 0.09s^2 - 0.27s^3 -0.065 - 0.83s - s^2 -
0.38s^3

clpoles =

-1.8586

-1.8477

-0.7541 + 0.6556i

-0.7541 - 0.6556i

-0.2991 + 0.4534i

-0.2991 - 0.4534i

-0.8073

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

-0.5388

-0.4545

fixedpoles =

0

-20.0000

-10.0000

The compensator may be converted to rational form by the command
[NumK,DenK] = rmf2rat(Y,X)

The compensator is given by

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058
4.4 13 17 14 5.6 (4.4 13 17 14 5.6)

()
0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s
s s s s s s s s s s s

K s
s s s s s s s s
s s s s s

+
 + + + + +

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6)
s s

s s s s s s

Inspection shows that integrating action is included in the second input channel as
intended.

Example 2: Wiener filtering problem

Wiener filtering problems may be defined as follows. A message signal x is given
by

= 1()x H s v

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

where v is a standard white noise process. The observed signal y is related to the
message process by

= 2()y H s v

1H and 2H are stable rational transfer matrices. It is desired to estimate the mes-
sage signal x by filtering the observed signal y.

Fig. 4. Wiener filter configuration

Fig. 4 shows the system configuration. Inspection shows that the generalized plant
that defines the 2H -problem is given by

−
=

1

2 0
G

H Iz v
Hy u

By way of example, suppose that x and y are related as
= +y x n

where the observation noise n is independent of the message signal x. The mes-
sage signal is generated by the shaping filter

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

=
+

12
1

(1)
x v

s

with 1v white noise, and the noise is given by

=
+ +

ω σ
ζω ω

2

22 22
o

o o
n v

s s

where the white noise 2v is independent of 1v . We let =ω 1o , =ζ 0.01 and
=σ 0.1so that the measurement noise is not very large but has a relatively sharp

peak at the cut-off frequency of the message signal. This defines

=

+

=
+ + +

ω σ
ζω ω

1 2

2

2 2 2 2

1() 0
(1)

1()
(1) 2

o

o o

H s
s

H s
s s s

so that

 − +
=

 + + +

ω σ
ζω ω

2

2

2 2 2

1 0 1
(1)

()
1 0

(1) 2
o

o o

s
G s

s s s

The following commands solve this problem:

d1 = (s+1)^2; n1 = 1;

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

omo = 1; zeta = 0.01; sigma = 0.1;

d2 = s^2+2*zeta*omo*s+omo^2; n2 = omo^2*sigma;

Num = [1 0 -1

1 n2 0];

Den = [d1 1 1

d1 d2 1];

[N,D] = rat2lmf(Num,Den);

[Y,X,clpoles] = H2(N,D,1,1)

The solution is returned as

Y =

0.91 + 0.018s + 0.91s^2

X =

1 + 0.2s + s^2

clpoles =

-0.1000 + 0.9950i

-0.1000 - 0.9950i
The command

bode(pol2mat(Y),pol2mat(X))

produces the Bode plot of the filter of Fig. 5. The filter is a notch filter that removes
the colored measurement noise as best as it can.

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

Fig. 5. Bode diagram of the Wiener filter

The solution is obtained by Wiener-Hopf optimization (Kwakernaak, 2000).

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust
Control Design,” Plenary paper, IFAC Symposium on Robust Control Design 2000,
21–23 June 2000, Prague, Czech Republic.

The macro h2 issues error messages if

 12G does not have full column rank or 21G does not have full row rank

Algorithm
Reference

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 h2

 The generalized plant has unstable fixed poles
If the option ‘check’ is activated then error messages are issued if

 The plant has fixed poles on the imaginary axis that cannot be canceled

 The closed-loop system transfer matrix cannot be made strictly proper
Warning messages are issued if

 21N or 12N have zeros on the imaginary axis

 The closed-loop system has one or more poles on the imaginary axis
The polynomial matrices 21N and 12N occur in the left en right coprime fractional
representations

− −
= =

121 112
21 22 22 21 22 22

22 22
,

G NG G D N N D
G N

If these polynomial matrices have roots on the imaginary axis then the two spectral
factorizations will also involve roots on the imaginary axis, which may make the
factorizations fail.

dsshinf ∞H suboptimal compensator for descriptor systems

mixeds Solution of a SISO ∞H mixed sensitivity problem

plqg Polynomial solution of a MIMO LQG problem

splqg Polynomial solution of a SISO LQG problem

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 jury

jury

Create the Jury matrix corresponding to a polynomial

J = jury(p,k)

J = jury(p,k,'rev')

The command

J = jury(p,k))

creates the constant Jury matrix J of dimension − × −(1) (1)k k corresponding to
the polynomial p. If

= + + +0 1() d
dp v p p v p v

and ≤k d then

− −

−

− −−

− −

 = −

01 2 3 2

0 11 4 3

0 1 4 31

0 1 2 3 2

0 0 0 0
0 0 00

()
00 0 0 0

0 0 0 0 0

k k k

k k

k kk k

k kk

pp p p p p
p pp p p p

J p
p p p pp p

p p p p pp

The default value of k is d.
 With the syntax

J = jury(p,k,'rev')

the coefficients …0 1, , , kp p p are reversed.

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 jury

The Jury matrix is quite useful when analysing the robust stability of discrete-time
systems by polynomial methods. In the Polynomial Toolbox the function is called
by the function stabint when computing stability interval.

This function is new in the Polynomial Toolbox.

The Jury matrix of the polynomial
P = 1+z+2*z^2+3*z^3+4*z^4+5*z^5

p =

1 + z + 2z^2 + 3z^3 + 4z^4 + 5z^5
simply is

J = jury(p)

J =

5 4 3 1

0 5 3 2

0 -1 4 2

-1 -1 -2 2

A version of reduced size is obtained by typing

J4 = jury(p,4)
J4 =

4 3 1

0 3 2

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 jury

-1 -1 2
The macro uses standard MATLAB operations.

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing
Company. New York, 1994.

The function displays no error messages.

hurwitz Hurwitz matrix for a polynomial

stabint robust stability interval

Algorithm
References

Diagnostics

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 pdisp

pdisp

Display a polynomial or polynomial matrix without its name

pdisp(M)

The command

pdisp(M)

displays the polynomial matrix M without printing the name.

Typing
M = [s+1 s^2+s]

M =

1 + s s + s^2
displays the matrix M including its name. The name is suppressed by typing

pdisp(M)

 1 + s s + s^2

This command is new in the Polynomial Toolbox.

The macro uses standard MATLAB commands.

Purpose
Syntax
Description

Example

Compatibility
Algorithm

 New Functions in Version 2.5 of the Polynomial Toolbox

 pformat rootr, pformat rootc

pformat rootr, pformat rootc

Format a polynomial or polynomial entry

pformat rootr

pformat rootc

The Polynomial Toolbox can display polynomial matrices in various formats under
the control of the command pformat. In addition to the formats available in Ver-
sion 2.0 (see the Manual for details) two more options were included in Version 2.5
that allow to display polynomials in terms of their roots.

By specifying the format rootr a polynomial with real coefficients is expressed as
a product of first and second order factors. Every real root results in real factor of
degree 1 while a pair of complex conjugate roots results in a real factor of degree
2.

The other new display format rootc returns a product of factors of degree 1 only.
A pair of complex conjugate roots now results in a pair of first degree factors with
complex coefficients.

For polynomials with complex coefficients the two new formats display identical
results with factors of degree 1 only.

For polynomial matrices the formats apply to each of the entries.

In Version 2.0 use of the options results in an error message.
By way of example, create a simple polynomial

P = (s-1)*(s+2)*(s+3*i)*(s-3*i);

Purpose
Syntax

Description

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 pformat rootr, pformat rootc

In the default display format symbs the polynomial is displayed as
p

p =

-18 + 9s + 7s^2 + s^3 + s^4
Changing the display format to rootr results in

pformat rootr

p
p =

(s+2.0000)(s^2+9.0000)(s-1)

The other new display format rootc returns a product of factors of degree 1 only.
A pair of complex conjugate roots now results in a pair of first degree factors with
complex coefficients:

pformat rootc

p
p =

(s+2.0000)(s+3.0000i)(s-3.0000i)(s-1)

To view the effect on polynomial matrices consider
pformat rootr

[s^2+2*s+1 s+s^2]

ans =

 New Functions in Version 2.5 of the Polynomial Toolbox

 pformat rootr, pformat rootc

(s+1)(s+1) s(s+1)
The routine uses standard MATLAB operations.

pformat Control the display format of polynomials and polynomial matrices

Algorithm

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 pol2tex

pol2tex

Conversion of a polynomial object into LaTeX code

Tex_str = pol2tex(A1,A2,…,AN)

Tex_str = pol2tex(A1,A2,…,AN,’File_name’)

The command

Tex_str = pol2tex(A1,A2,…,AN)

converts the polynomial matrices or standard MATLAB matrices A1,A2,…,AN into a
string Tex_str in LaTeX code to be used in LaTeX source files. LaTeX is a well-
known document preparation system that is especially effective for text containing
many mathematical formulas including matrices [1]. The output string comprises a
sequence of LaTeX commands to create an array surrounded by bracket delimiters
in display mathematical mode. The user is expected to copy this string to a LaTeX
source file.
Alternatively, the command

Tex_str = pol2tex(A1,A2,…,AN,’File_name’)

appends Tex_str to the existing file File_name.tex. If the file does not exist
then the output string is saved in a newly created TEX file. This file, however, does
not contain any LaTeX preamble and hence cannot be compiled by LaTeX as it is.
Instead, it can be related to another TEX file using LaTeX command input or the
include statement.

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 pol2tex

The macro allows any number of input arguments. The resulting format is given by
the currently active display format, which is controlled by the functions pformat
and format.

This function is new in the Polynomial Toolbox.

The following examples illustrate how the command should be used.

Example 1
Consider a polynomial matrix C given by

» C=[-8+s 1-6*s 6+6*s; 0 2 1; -1+4*s-3*s^2 2.1e-5 11-s]
C =

-8 + s 1 - 6s 6 + 6s

0 2 1

-1 + 4s - 3s^2 2.1e-005 11 – s
which should be included in a LaTeX based document. Calling pol2tex creates
the string

» pol2tex(C)

ans =

$$

C=

\left[\begin{array}{lll}

-8+s & \;\;\;1-6s & \;\;\;6+6s \\

\;\;\;0 & \;\;\;2 & \;\;\;1 \\

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 pol2tex

-1+4s-3s^{2} & \;\;\;2.1*10^{-5} & \;\;\;11-s

\end{array} \right]

$$
This string may be further edited if necessary. If the string is copied into an existing
LaTeX file and compiled by LaTeX then one gets the fairly nice result

2 5

8 1 6 6 6

0 2 1

1 4 3 2.1 10 11

s s s

C

s s s−

 − + − +

 =
 − + − × −

Example 2
As another example consider a constant matrix B

B =

0.2200 -0.3333 0.1222 4.0000

-0.6364 8.0000 0.0927 0.4000

and change the format to rational

» format rat

» B

B =

11/50 -1/3 11/90 4

-7/11 8 29/313 2/5

 New Functions in Version 2.5 of the Polynomial Toolbox

 pol2tex

Then
» pol2tex(B)

ans =

$$

B=

\left[\begin{array}{llll}

\;\;\; \frac{11}{50} & -\frac{1}{3} & \;\;\;
\frac{11}{90} & \;\;\; 4 \\ \\

-\frac{7}{11} & \;\;\; 8 & \;\;\; \frac{29}{313} &
\;\;\; \frac{2}{5}

\end{array} \right]

$$

LaTeX returns this as

The macro uses standard MATLAB 5 operations.

The macro displays error messages if

 There are not enough input arguments.
 The class of the input argument is inappropriate.

Algorithm
Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 pol2tex

Leslie Lamport, LaTeX: A Document Preparation System. Addison-Wesley, Read-
ing, Massachusetts, 1994.

char Convert a polynomial object to a string

pformat Set the output format for a polynomial object

References

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 psseig

psseig

Polynomial approach to eigenstructure assignment for a state-space system
L = psseig(F,G,P[,TOL])

Given a linear system

= +x Fx Gu
where F is an ×n n constant matrix and G is an ×n m constant matrix, and

a set of polynomials { }= ≤…1 2(), (), , () ,rP p s p s p s r m , the command

L = psseig(F,G,P)

returns, if possible, a constant matrix L such that the closed-loop matrix of the con-
trolled system

= −()x F GL x
has invariant polynomials …1 2(), (), , ()nq s q s q s , where

+

=
=

=
= = =

1 1 2

2 2 3

1

() () ()
() () (),

() (),
() () 1

r r

r n

q s p s q s
q s p s q s

q s p s
q s q s

Such a matrix exists if and only if the fundamental degree inequality
+ + ≥ + +1 2 1 2deg deg deg k kq q q c c c

Purpose
Syntax
Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 psseig

holds for all = …1,2, ,k r , where ≥ ≥ ≥1 2 rc c c are the controllability indices of the
pair (F,G). Moreover, equality must hold for k = r. If the input polynomials P do not
satisfy these conditions then the macro issues an error message.

A tolerance TOL may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

This function is new in the Polynomial Toolbox.

The dynamics of an inverted pendulum linearized about the equilibrium position are
described by the equation

= +x Fx Gu
where

 − = =

−

0 1 0 0 0
10.7800 0 0 0 0.2000

,
0 0 0 1 0

0.9800 0 0 0 0.2000

F G

The desired closed-loop poles are selected as
− ±
− ±
1
2 2

j
j

This yields the invariant polynomial

= + + + +ψ 4 3 2
1() 6 18 24 16s s s s s

Since = 1m , one has

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 psseig

= = =ψ ψ ψ2 3 4() () () 1.s s s
We aim to find a feedback gain matrix L so that the state feedback law = −u Lx
assigns these invariant polynomials to the closed loop system matrix −F GL . The
corresponding code is as follows:

F=[0,1,0,0;10.78,0,0,0;0,0,0,1;-0.98,0,0,0]

F =

0 1.0000 0 0

10.7800 0 0 0

0 0 0 1.0000

-0.9800 0 0 0
G=[0;-0.2000;0;0.2000]

G =

0

-0.2000

0

0.2000
P = s^4 + 6*s^3 + 18*s^2 + 24*s + 16;

L=psseig(F,G,P)

Constant polynomial matrix: 1-by-4

L =

 New Functions in Version 2.5 of the Polynomial Toolbox

 psseig

-1.5e+002 -42 -8.2 -12
det(s*eye(4)-F+G*L)-P

Zero polynomial matrix: 1-by-1, degree: -Inf

ans =

0

The algorithm is fully described in reference [1]. It may be summarized as follows:

1. A coprime matrix polynomial fraction description (), ()r rA s B s is computed
for the system with the macro ss2rmf.

2. The controllability indices (the column degrees of ()rA s) are sorted and the
fundamental degree condition for invariant polynomials assignment is
checked.

3. A polynomial matrix ()rC s featuring the controllability indices and the de-
sired invariant polynomial factors is built.

4. The Diophantine equation + =() () () () ()L r l r rX s A s Y s B s C s is solved for a
constant solution ,L lX Y with the macro xaybc.

5. The constant feedback matrix −= 1
L lL X Y $ is constructed.

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback
Control.” Proceedings of the IEEE International Symposium on Computed-Aided
Control System Design, IEEE, pp. 380–385, Kohala Coast, Hawaii, August 1999.

The macro produces error messages if

• the input matrices have incompatible dimensions

Algorithm

References

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 psseig

• there is an incorrect number of invariant polynomials

• some invariant polynomial is zero

• the fundamental degree condition is not satisfied

psslqr Polynomial approach to linear-quadratic regulator design for state-
space systems

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 psslqr

psslqr

Polynomial approach to linear-quadratic regulator design for state-space systems
L = psslqr(F,G,H,J[,TOL])

Given a linear system

= +x Fx Gu
where F is an ×n n constant matrix and G is an ×n m constant matrix, and a regu-
lated variable

= +z Hx Ju
where H is a ×p n constant matrix and J is a ×p m constant matrix, the command

L = psslqr(F, G, H, J)

returns a constant matrix L such that the control function = −u Lx minimizes the
2L -norm of z for every initial state x(0).

It is assumed that

= =0,T TJ H J J I
A tolerance TOL may be specified as an additional input argument. Its default value
is the global zeroing tolerance.
This function is new in the Polynomial Toolbox.

The linearized model of the vertical-plane dynamics of an AIRC aircraft is de-
scribed by the equations

Purpose
Syntax
Description

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 psslqr

= +
= +

L

L

x Fx G v
y Hx J v

where

 =

0 0 1.1320 0 -1
0 -0.0538 -0.1712 0 0.0705

,0 0 0 1 0
0 0.0485 0 -0.8556 -1.013
0 -0.2909 0 1.0532 -0.6859

F

 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

H

We want to design a linear Gaussian filter for the covariance matrices given by

 =

 =

0 0 0 0 0 0
-0.1200 1 0 0 0 0

,0 0 0 0 0 0
4.4190 0 -1.6650 0 0 0
1.5750 0 -0.0732 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

L

L

G

J

 New Functions in Version 2.5 of the Polynomial Toolbox

 psslqr

The corresponding code is as follows:
F = [0,0,1.1320,0,-1;0,-0.0538,-.1712,0,0.0705;0,0,0,1,0;
0,0.0485,0,-0.8556,-1.0130;0,-0.2909,0,1.0532,-0.6859]
F =

0 0 1.1320 0 -1.0000

0 -0.0538 -0.1712 0 0.0705

0 0 0 1.0000 0

0 0.0485 0 -0.8556 -1.0130

0 -0.2909 0 1.0532 -0.6859
H = [1,0,0,0,0;0,1,0,0,0;0,0,1,0,0]

H =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

GL = [0,0,0,0,0,0;-
0.12,1,0,0,0,0;0,0,0,0,0,0;4.4190,0,1.665,0,0,0;

1.575,0,-0.0732,0,0,0]
GL =

0 0 0 0 0
0

 New Functions in Version 2.5 of the Polynomial Toolbox

 psslqr

-0.1200 1.0000 0 0 0
0

0 0 0 0 0
0

4.4190 0 1.6650 0 0
0

1.5750 0 -0.0732 0 0
0

JL = [0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1]
JL =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

L = psslqr(F',H',GL',JL')

Constant polynomial matrix: 3-by-5

L =

1 0.066 -0.21 -0.45 -0.81

0.066 0.94 -0.069 -0.053 -0.25

-0.21 -0.069 1.8 1.6 2.2

The algorithm is fully described in reference [1]. It may be summarized as follows: Algorithm

 New Functions in Version 2.5 of the Polynomial Toolbox

 psslqr

1. A coprime matrix polynomial fraction description (), ()r rA s B s is computed
for the system with the macro ss2rmf.

2. A polynomial matrix ()rC s with 2L -optimal eigenstructure is computed with
the spectral factorization macro spf.

3. The Diophantine equation + =() () () () ()L r l r rX s A s Y s B s C s is solved for a
constant solution ,L lX Y with the macro xaybc.

4. The constant feedback −= 1
L lL X Y is constructed.

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback
Control.” Proceedings of the IEEE International Symposium on Computed-Aided
Control System Design, IEEE, pp. 380–385, Kohala Coast, Hawaii, August 1999.

The macro produces error messages if

• the input matrices have incompatible dimensions

• the orthogonality condition on covariance matrices does not hold

psseig Polynomial approach to eigenstructure assignment for state-space
system

Reference

Diagnostics

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

sarea, sareaplot

Robust stability area for polynomials with parametric uncertainties

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new'])

The command

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

investigates the robust stability of a family of polynomials depending on m uncer-
tain parameters. By gridding the parameter space the family is split into a number
of standard polynomials that are separately checked for stability. The m-
dimensional grid is defined by the vectors of parameter values …1, , mq q , and the
results are stored in an m-dimensional array S structured accordingly. As expected,
in S 1s stand for “stable” and 0s for “unstable.”
For details on checking the stability of a single polynomial please read the descrip-
tion of macro isstable. The parameters …0, , np p are given fixed polynomials
that serve to define the uncertainty structure. Note that the input arguments repre-
senting both the parameters and the fixed polynomials must be written using their
names (rather than values) in the function call.
The uncertainty structure of the polynomial family is defined by the string variable
ExpressionString. This string may contain any MATLAB-like expression com-

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

posed of the parameter names (acting here as scalars) and of the names of the
fixed polynomials.

The procedure is better explained in the examples below. For three or more uncer-
tain parameters dense gridding may result in slow performance. Typing

verbose yes

before the run activates an on-line info on the macro performance.

Once the array S is available, it may be plotted by typing one of
sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new'])
for the case of one, two or three parameters, respectively. As before the parame-
ters 1 2 3, ,q q q must be typed by names and not by values. The optional argument
PlotType specifies the type of plot. It may be a surface plot (default or Plot-
Type='surf'), a point plot (PlotType='points'), or a combination of the two
(PlotType='both'). The surface plot is usually nicer but may miss some details,
while the point plot is always complete. With the input string argument 'new' the
plot is displayed in a new window.
These functions are new in the Polynomial Toolbox.

The following examples illustrate how the command should be used.

Example 1
Consider an uncertain polynomial

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

= + + +1 2 0 1 2 1 2 2(, ,) () () () ()p s q q p s q q p s q p s

composed of three fixed polynomials

= + + +

= − +

= +

2 3
0

2
1

4
2

4 8 5

1

p s s s

p s s

p s s

and two real parameters ∈ − 1 6,12q and ∈ − 2 5,15q . Suppose you want to
check which values of 1q and 2q give rise to a stable 1 2(, ,)p s q q . As there are two
parameters and the uncertainty structure is quite complicated there is hardly any
theoretical method known to help. Nevertheless, simple gridding can do the job in a
reasonable time.

To start, insert the data
p0 = 4+8*s+5*s^2+s^3; p1=1-s+s^2; p2=s+s^4;

and choose an appropriate grid, such as
q1 = -6:.1:12; q2=-5:.1:15;

Then construct the stability area array by typing

S = sarea(q1,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2);
and plot it with the help of

sareaplot(q1,q2,S)

What you get is the really nice picture displayed in Fig. 1. It shows which combina-
tions of parameter values yield a stable polynomial.

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

Fig. 6. Stability area of Example 1

It is a must here to use names rather than values as the input arguments for both
the parameters and the polynomials. Violation of this rule causes an error mes-
sage:

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

S=sarea(-
6:.1:12,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2);

??? Error using ==> sarea

The input argument of parameter vector or polynomial must be
a named variable.

Example 2
For the same three fixed polynomials, but a different uncertainty structure

= + +λ λ λ λ λ3
1 2 0 1 2 1 2 1(, ,) () () ()p s p s p s p s

and parameters ∈ − λ1 20,20 and ∈ − λ2 10,10 , we may use the grid

lambda1 = -20:.1:20; lambda2 = -10:.1:10;

and type

expr = 'p0+lambda1*lambda2*p1+lambda2^3*p1';

S2 = sarea(lambda1,lambda2,expr,p0,p1,p2);

sareaplot(lambda1,lambda2,S2)

This results in the amusing picture shown in Fig. 7.

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

Fig. 7. Stability area for Example 2

Example 3
3-D examples are even nicer but, of course, more time consuming. Consider a
three-parameter uncertain polynomial

= + + + 2 2
1 2 3 0 1 1 3 3 1 1 2 2(, , ,) () () () ()p s q q q p s q q q q p s q q p s

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

with

= + + +

= − + +

= + −

2 3
0

2
1

2
2

() 2 4 3

 () 1.7 0.13 0.29

() 1.2 1.2 0.038

p s s s s

p s s s

p s s s

and ∈ − 1 2 3, , 20, 20q q q . When inputting the data

p0 = 2+4*s+3*s^2+s^3;

p1 = -1.7+0.13*s+0.29*s^2;

p2 = 1.2+1.2*s-0.038*s^2;

q1 = -20:.5:20;q2=q1;q3=q1;

expr = 'p0+(q1+q1*q2)*q3*p1+(q1^2*q2^2)*p2';

the function called by

S3 = sarea(q1,q2,q3,expr,p0,p1,p2);

needs more than one hour on an average PC. The command

sareaplot(q1,q2,q3,S3)

results in Fig. 8. Such a 3-D plot can of course be zoomed or rotated by mouse in
the standard MATLAB manner.

Example 4
We consider another 3-D example of uncertainty structure

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

Fig. 8. Stability area for Example 3

= + − + +2
1 2 3 0 1 3 1 2 3 2(, , ,) () ()p s q q q p q q p q q p

with

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

= + + +

= − −

= − +

2 3
0

2
1

2
2

() 2 4 3

 () 0.5 1.5

() 0.02 2

p s s s s

p s s s

p s s s

∈ − ∈ − ∈ 1 2 37,7 , 40,2 , 0,40q q q

We enter the data

p0 = 2+4*s+3*s^2+s^3;

p1 = 0.5-1.5*s-s^2;

p2 = 0.02-2*s+s^2;

expr = 'p0+(q1^2-q3)*p1+(q2+q3)*p2';

q1 = -7:.1:7; q2=-40:2; q3 = 0:0.5:40;
and run the macros

S4 = sarea(q1,q2,q3,expr,p0,p1,p2);

sareaplot(q1,q2,q3,S4)
to obtain Fig. 9.

The method is trivial: It directly runs a stability test step by step for each particular
point of the grid.

The macro sarea displays an error messages if

• There are not enough input arguments

Algorithm

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

Fig. 9. Stability area for Example 4

• An argument corresponding to parameter or polynomial is not a named vari-
able

• An invalid argument is encountered

 New Functions in Version 2.5 of the Polynomial Toolbox

 sarea, sareaplot

• The expression string cannot be evaluated (in which case the error message
is generated by lasterr and hence its text may vary according to the
situation encountered).

The macro sareaplot displays an error messages if

• An invalid argument or option is encountered

• There are more than three vectors representing uncertain parameters

• Input arguments have inconsistent dimensions

isstable Stability test for a polynomial matrix

vset, vsetplot Value set plot for a parametric polynomial family

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 sim2lmf, sim2rmf

sim2lmf, sim2rmf

LMF and RMF description of a SIMULINK model.

[N,D] = sim2lmf('model')

[N,D] = sim2lmf('model',X0)

[N,D] = sim2lmf('model',X0,U0)

[N,D] = sim2rmf('model')

[N,D] = sim2rmf('model',X0)

[N,D] = sim2rmf('model',X0,U0)

The command

[N,D] = sim2lmf('model')
returns the LMF description for the linearization of the SIMULINK scheme called
'model'. The initial conditions for inputs and internal states of related observer-
form realization by default are supposed to be zero but may be specified as addi-
tional input arguments:

[N,D] = sim2lmf('model',X0)

[N,D] = sim2lmf('model',X0,U0)

Similarly, the commands

[N,D] = sim2rmf('model')

[N,D] = sim2rmf('model',X0)

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 sim2lmf, sim2rmf

[N,D] = sim2rmf('model',X0,U0)

compute the RMF description of the SIMULINK file 'model'.

These functions are new in the Polynomial Toolbox.

Consider the SIMULINK nonlinear model 'pendm' of an undamped simple pendu-
lum depicted in Fig. 10.:

Fig. 10. SIMULINK model of a simple undamped pendulum

The sim2lmf command may be employed to obtain its linearization

[N,D] = sim2lmf('pendm')

Constant polynomial matrix: 1-by-1

N =

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 sim2lmf, sim2rmf

-1

D =

-9.8 - s^2

Without specifying any initial conditions we obtain the linearization around the
lower stable position of the pendulum. The linear model of an inverted pendulum
can be found using the same SIMULINK scheme by prescribing the initial angle

=ϕ π0 :
[N,D] = sim2lmf('pendm', [pi 0])

Constant polynomial matrix: 1-by-1

N =

-1

D =

9.8 - s^2

The command sim2rmf will of course give the same result in this SISO example.

The standard SIMULINK command linmod is utilized along with the Polynomial
Toolbox macros ss2lmf and ss2rmf.

The macros sim2lmf and si2rmf display error messages if

• The specified SIMULINK model does not exist

• The length of the initial conditions vector does not match the model dimen-
sion

• An invalid argument is encountered

Algorithm

Diagnostics

 New Functions in Version 2.5 of the Polynomial Toolbox

 sim2lmf, sim2rmf

ss2lmf, ss2rmf State-space to LMF and RMF conversion

polblock Polynomial Toolbox block for SIMULINK

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

spherplot

Plot the value set of a polynomial family with a spherical uncertainty set and inde-
pendent uncertainty structure for a range of frequencies.

spherplot(p0,omega,r,W)

spherplot(p0,omega,r)

spherplot(p0,omega)

This is a tool for testing robust stability using the Zero Exclusion Condition. A family
of polynomials P = {p(⋅ ,q) : q∈ Q} is said to be spherical if p(⋅ ,q) has an independ-
ent uncertainty structure and the uncertainty set Q is an ellipsoid. The command

spherplot(p0,omega,r,w)

plots the value sets for the spherical polynomial family, where p0 is a nominal
polynomial, omega is a vector of generalized frequencies, r is a robustness bound
and weight is a vector of diagonal entries of the weighting matrix W. If the family
has an independent uncertainty structure then the polynomial family can be ex-
pressed in the centered form

=

= +∑0
0

(,) ()
n

i
i

i

p s p s q sq

where the weighted Euclidian norm of the vector of the uncertain parameters is
bounded by

≤2,W rq

Purpose

Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

The command

spherplot(p0,omega,r)

assumes that the weighting matrix w is the unit matrix. The command

spherplot(p0,omega)
assumes that the weighting matrix is the unit matrix and the robustness margin r
equals 1. The vector of uncertain parameters is then bounded by

≤2 1q

As with other tools based on the Zero Exclusion Condition it is necessary to make
sure that there is at least one stable member of the polynomial family. Also re-
member that if you enter the weight parameter you only assign the vector of di-
agonal entries and not the whole matrix.
This function is new in the Polynomial Toolbox.

Example 1
Consider the uncertain polynomial

= + + + + + + +2 3
0 1 2 3(,) (0.5) (1) (2) (4)p s q q q s q s q s

with the uncertainty bound ≤2, 1Wq and the weighting matrix ()= diag 2, 5, 3,1W ,
that is,

+ + + ≤2 2 2 2
0 1 2 32q 5 3 1q q q

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

Use the graphical method of the Zero Exclusion Principle to test for the robust sta-
bility of the given uncertain polynomial. First we express the given polynomial in the
centered form

=

= + + + +∑
3

2 3

0

(,) 0.5 6 4 i
i

i

p s s s s q sq

with the uncertainty bound unchanged. Now type

p0 = 0.5+s+6*s^2+4*s^3;

weight = [2,5,3,1];

r = 1; omega = 0:.01:1;

isstable(p0)
ans =

1

The graphical representation of the value set for the given range of frequencies is
generated by

spherplot(p0,omega,r,weight)
and shown in Fig. 11. It can be seen that the Zero Exclusion Condition is violated
so we conclude that the given polynomial family is not robustly stable.

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

Fig. 11. Value set for Example 1

Example 2
Similarly to the previous example, test the following polynomial [1, pp.268] for ro-
bust stability

() ()= + + + + + + +2 3
0 1 2 3(,) (2) 1.4 1.5 (1)p s q q s q s q sq

with the uncertain parameters subject to

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

≤2 0.011q

We type

p0 = 2+1.4*s+1.5*s^2+s^3; r = 0.011; omega = 0:0.005:1.4;
isstable(p0)

ans =

1

spherplot(p0,omega,r)

This results in Fig. 12. In this case, the origin is excluded from the value set and we
conclude that the polynomial family is robustly stable.

The value set at each frequency is characterized [1, p. 270] by an ellipse centered
at nominal ()ω0p j and with principal axis in the real direction having length

 =

∑ ω2 2

0 2 i
i

i even

R r w

and principal axis in the imaginary direction having length

 =

∑ ω2 2

0 2 i
i

i odd

I r w

The number r is a bound on the Euclidean norm of the vector of uncertain parame-
ters, ω is a frequency, and W a weighting matrix given by

Algorithm

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

Fig. 12. Value set for Example 2

()= …2 2 2
1 2, , , nW diag w w w .

[1] R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publish-
ing Company. New York, 1994.

The macro returns error messages if the input arguments are incompatible.

khplot Value set for an interval polynomial.

References

Diagnostics

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 spherplot

ptopplot Value set for a polytope of polynomials.

vsetplot Value set for polynomials with general uncertainty struc-
ture

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

tsyp

Use the Tsypkin-Polyak function to determine the ∞ robustness margin for a con-
tinuous interval polynomial.

R = tsyp(p0,w,epsilon)

R = tsyp(p0,w)

R = tsyp(p0)

R = tsyp(p0,[],epsilon)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,w,epsilon)

[R,W] = tsyp(p0,w)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,[],epsilon)

Given the nominal polynomial p0 the macro finds a robustness margin R such that
the resulting interval polynomial

()
=

= + −∑ ε ε0
0

, () [,]
n

i
R i i

i

p s q p s R s

is robustly stable. The command

R = tsyp(p0,w,epsilon)

Purpose

Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

computes the robustness margin for an interval polynomial p0 at frequencies given
by the vector w and with scale factors given by the vector epsilon. The command

R = tsyp(p0,w)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors. The
command

R = tsyp(p0)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors and
supplies its own vector of frequencies. The command

R = tsyp(p0,[],epsilon)

uses the supplied scale factors but computes its own frequency vector . The com-
mands

[R,W] = tsyp(p0)

and

[R,W] = tsyp(p0,[],epsilon)

return the computed vector of frequencies as the second output for possible use
with the function khplot.

If no output is specified then the graphical output of Tsypkin-Polyak function is
generated. Also shown is the robustness margin square, which is the largest pos-
sible square inscribed inside the plot of the Tsypkin-Polyak function. Its size is the
robustness margin R.
This function is new in the Polynomial Toolbox. Compatibility

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

Example 1
We consider the interval polynomial family Pr with the nominal polynomial given by

= + + + + + +2 3 4 5 6() 676 1365 1019 420 104 15op s s s s s s s
and scaling factors ε0 = 676, ε1 = 682.5, ε2 = 509.5, ε3 = 210, ε4 = 52, ε5 = 15,
ε6 = 0. Find a robustness margin R such that the resulting interval polynomial is
robustly stable. Typing

p0 = pol([676 1365 1019 420 104 15 1],6);

w = 1:0.01:10;

epsilon = [676 682.5 509.5 210 52 15 0];

tsyp(p0,w,epsilon)
ans =

0.2344

results in Fig. 13. We obtain the robustness margin R = 0.2344, which may be
viewed as size of the largest possible square inscribed inside the plot of the Tsyp-
kin-Polyak function.

Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

Fig. 13. Output for Example 1

Example 2 — Simple feedback
The nominal pitch control system ([1], pp.101) is described in Fig. 14. Find the
robustness margin for K = 4.
We enter these commands:

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

0.25s+0.25*0.435

s +3.456s +3.457s +0.719s+0.04164 3 2

Vehicle

4

K

PitchPitch command

Fig. 14. Pitch control system

K = 4;

num = pol([0.25*0.435 0.25],1);

den = pol([.0416 .719 3.457 3.456 1],4);

p0 = den + K*num;
[R,W] = tsyp(p0); R

R =

0.2741
pminus = p0 - R*p0;

pplus = p0 + R*p0;

khplot(pminus, pplus, W)
The output is shown in Fig. 15.

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

-80 -60 -40 -20 0 20 40 60 80

-100

-80

-60

-40

-20

0

20

40

60

80

100

Real Axis

Im
a
g A
xi
s

Fig. 15. Output for Example 2

Restricting the frequency range to lower frequencies (or zooming) by typing
khplot(pminus, pplus, W(1:round(length(W)/3)))

leads to Fig. 16. Thus we have found the robustness margin R and now it is easy to
find the uncertainty bounds on the coefficients of the polynomial:

Qbounds = [pminus{:}' pplus{:}']

Qbounds =

0.3460 0.6072

1.2478 2.1902

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

2.5093 4.4047

2.5086 4.4034

0.7259 1.2741

If the coefficients remain within these intervals then the polynomial is guaranteed to
be stable.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Real Axis

Im
a
g A
xi
s

Fig. 16. Zoomed output for Example 2

The algorithm is based on the Tsypkin-Polyak function GTP(ω) described in [1],
pp.97. It finds a robust margin R such that the condition () ∞

>ωTPG R is satis-
Algorithm

 New Functions in Version 2.5 of the Polynomial Toolbox

 tsyp

fied for all frequencies (recall that () (){ }∞ = ∈max Re , Im ,z s z z C and no de-
gree drop occurs. It uses the standard MATLAB minimization routine fminbnd.

R. Barmish, New Tools for Robustness of Linear Systems. Macmillan Publishing
Company. New York, 1994.

Since the quality of the result of the minimization routine depends considerably on
the initial guess, the proper choice of the frequency range is important. The pro-
gram automatically validates its result by the testing stability of the four Kharitonov
polynomials. If these are not robustly stable then the following error message ap-
pears:

Warning: Resulting margin does not guarantee robust

stability of the interval polynomial. Run again with

extended frequency range and/or denser gridding.

Also use the graphical output to assess the acceptability of the result.

khplot Value set for an interval polynomial.

kharit Return the Kharitonov polynomials

References

Diagnostics

See also

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

vset, vsetplot

Value set of a parametric polynomial

V =
vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega][,qType])

vsetplot(V[,PlotType][,'new'])

This is another tool for robust stability testing with the help of the Zero Exclusion
Condition. The command

V =
vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega[,qType]])

computes the values at the generalized frequencies given by the vector ω of a
family of polynomials depending on m independent parameters. The parameter
values that are selected are given by the vectors …1, , mq q and the results are
stored in a matrix V of complex numbers. The values at the various frequencies
are organized column wise.

The arguments …0, , np p are given fixed polynomials that define the family. The
uncertainty structure is described by the string variable ExpressionString.
This string is a MATLAB-syntax expression for

+ +0 1 0 1(,...,) (,...,)m n m na q q p a q q p that is composed of the parameter names and
the names of the fixed polynomials. The “coefficients” 1(,...,)i ma q q are given by any
MATLAB-syntax expression consisting of the parameter names acting here as scalar
symbols.

Purpose
Syntax

Description

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

Note that the input arguments representing both the parameters and the fixed
polynomials must already exist in the current workspace and, moreover, must be
written using their names (rather than values) in the function call. The use of the
command is further explained in the examples below.
Once the value matrix V is available one can plot it by typing

vsetplot(V[,PlotType][,'new'])

The plot consists of the sets ω()iV of values for the generalized frequencies. De-
pending on the optional argument PlotType they can be composed of lines (de-
fault or PlotType = 'lines') or points (PlotType = 'points'). With the
input string argument 'new' the plot is displayed in a new window.
By default or with the string argument qType = 'r' the grid consists of combina-
tions of entries in the vectors …1, , mq q . When qType='e' the grid consists of l
points defined by their coordinates in m-dimensional space; all the …1, , mq q must
be of the same length l..

This pair of macros tests robust stability of the polynomial family by the Zero Exclu-
sion Condition [1]. If the family contains a stable member and if the value set for all
generalized frequencies on the stability region boundary excludes the point 0 then
the family is concluded to be robustly stable (stable for all parameters ranging
given intervals). For more details, see [1] or another robust control textbook.

To perform the robust stability test we first find a stable member in the family. Typi-
cally, the nominal value is stable or we proceed by trial and error. Once a stable
member is found we substitute into the family several generalized frequencies from
the stability boundary and plot the corresponding value sets. It is important to use

Scope

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

frequencies leading to value sets close to the point 0. If none of the sets contains
or touches the critical point then robust stability is verified.

To plot value sets for special uncertainty structures such as polytopic or even inter-
val uncertainty more efficient macros are available, in particular ptopplot and
khplot, respectively.

These functions are new in the Polynomial Toolbox

To understand the use of command, go through the following simple examples.

Example 1: Continuous-time case
Consider an uncertain polynomial

= + + +1 2 0 1 1 2 2 1 2 12(, ,) () () () ()p s q q p s q p s q p s q q p s
composed of four fixed polynomials

= + + + +

= + + +

= + + +

= + +

2 3 4
0

2 3
1

2 3
2

2
12

1.853 3.164 2.871 2.56

3.773 4.841 2.06

1.985 1.561 1.561

4.032 1.06

p s s s s

p s s s

p s s s

p s s

and check its robust stability for ∈ 1 0,1q and ∈ 2 0, 3q . To this end, first enter
the data

p0 = pol([1.853 3.164 2.871 2.56 1],4);

p1 = pol([3.773 4.841 2.06 1],3);

p2 = pol([1.985 1.561 1.561 1],3);

Compatibility
Examples

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

p12 = pol([4.032 1.06 1],2);
describe the uncertainty structure

expr = 'p0+q1*p1+q2*p2+q1*q2*p12'

and define a reasonable grid for the parameter intervals
q1 = 0:1/50:1; q2=0:3/50:3;

As the polynomials are of continuous-time nature it is necessary to plot value sets
for several critical frequencies on the imaginary axis. Hence, choose ωi = 1.3, 1.4,
1.6, 1.6 and type

V = vset(q1,q2,expr,p0,p1,p2,p12,j*[1.3:.1:1.6]);

vsetplot(V,'points')

to obtain the plot of Fig. 17. Note that the value sets are not convex. This typically
happens whenever the uncertainty structure is multilinear or more complex.

As one of the value sets (that for =ω 1.4i) seems to include the critical point 0 we
zoom the plot in to that of Fig. 18 to see more details. It is evident that ∈0 (1.4)V
and, hence, the family is not robustly stable.

Example 2: Discrete-time case
Now consider a family of discrete-time polynomials with quite complicated uncer-
tainty

− − − − −= + − +1 1 1 1 2 1(, , ,) () sin() () cos() () ()p z k l m e z k f z k kg z l h z

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

Fig. 17. Value set for Example 1

where
− − − −

−

− −

− −

= − + −

=

=

=

1 1 1 1

1

1 1

1 2

() (1.5)(2)(2)

() 1

()

()

e z z z z

f z

g z z

h z z

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

and ∈ − , , 1,1k l m . Here the data to be entered are
e = (zi-1.5)*(zi+2)*(zi-2);f=1; g=zi; h=zi^2;

uncrty = 'e+sin(k)*f-cos(m)*k*g+(l^2)*h';

and, say,
k = -1:.1:1; l = k; m = k;

Fig. 18. Zoomed plot

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

Before using the Zero Exclusion Condition to test robust stability we must check
that the family contains at least one stable member. Indeed, the nominal polyno-
mial − −=1 1(,0,0,0) ()p z e z is stable:

isstable(e)

ans =

1

Now we evaluate and plot value sets at 40 generalized frequencies evenly spread
around unit circle:

V = vset(k,l,m,uncrty,e,f,g,h,exp(j*(0:2*pi/40:2*pi)));

vsetplot(V)

and obtain the picture of Fig. 19. As all the sets are far enough to the right of the
critical point robust stability is verified.

Example 3: Incorrect calls
The user must not forget about calling the function with named variable arguments.

Even if the parameters
q0 = 1:5;

already exist in the workspace it must be represented by its name. The following
call is definitely incorrect

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

Fig. 19. Value set for Example 2

vset(1:5,'q0*p',p,j)
??? Error using ==> vset

Undefined function or variable 'q0'.

The method is quite easy. The overall picture is composed of the value sets for the
generalized frequencies. Each set is obtained by substituting the frequencies into

Algorithm

 New Functions in Version 2.5 of the Polynomial Toolbox

 vset, vsetplot

the uncertainty formula for all parameter values achieved by gridding the parameter
set.

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing
Company. New York, 1994.

The macro vset displays an error message if
 The set of generalized frequencies is not a non-empty vector

 There are not enough input arguments

 The expression string cannot be correctly evaluated. Here the error message is
returned by lasterr and hence its text may vary according to the inconsis-
tency encountered

The macro vsetplot displays an error message if

• The value set matrix is not a non-empty 2-dimensional double.

• An inappropriate input string argument is used.

khplot Value set for an interval polynomial.

ptopplot Value set for a polytope of polynomials.

References

Diagnostics

See also

	Go to COMMANDS
	Go to MANUAL
	UPGRADE INFO version 2.5 title page
	Contents
	Introduction
	How to use this document
	References to other documents
	New installation instructions
	Upgrading instructions
	Documentation
	A note for SIMULINK 3 users on Windows platforms
	Compatibility with M ATLAB version 6

	What is New in Version 2.5?
	Overview
	Bug fixes
	Improved algorithms and other internal changes
	New display formats
	New functions
	Miscellaneous updates and modifications

	New Functions in Version 2.5 of the Polynomial Toolbox
	clements1
	complete
	dssh2
	dssreg
	gare
	h2
	jury
	pdisp
	pformat rootr, pformat rootc
	pol2tex
	psseig
	psslqr
	sarea, sareaplot
	sim2lmf, sim2rmf
	spherplot
	tsyp
	vset, vsetplot

