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 Introduction  

 How to use this document 

Introduction 
This document highlights the new features of Version 2.5 of the Polynomial Tool-
box for MATLAB 

How to use this document 

If you are upgrading to Version 2.5 
of the Polynomial Toolbox from … 

Then read ... 

Polynomial Toolbox Version 2.0 All sections of the present document. 

Polynomial Toolbox Version 1.4 or1.5 
for Matlab 4 

The complete documentation of Ver-
sion 2 and then all sections of the 
present document. It may also be 
necessary to update your MATLAB 
knowledge. 

References to other documents 

Throughout this document there are references to the Manual and the Commands 
volumes of Version 2.0 of the Polynomial Toolbox. 
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New installation instructions 

The Polynomial Toolbox 2.5 may be installed in the following simple steps. 
• Delete any existing Polynomial Toolbox Version 2.0 (the existing folder   

...\polynomial and its contents). 
• Copy the whole folder  \polynomial including all its contents   from the 

Polynomial Toolbox CD-ROM Version 2.5 to your PC, preferably next to 
other MATLAB toolboxes that all are placed in the folder  
...\MATLABR12\toolbox or ...\MATLABR11\toolbox or  
...\MATLAB\toolbox. 

• Add the folder ...\polynomial to your MATLAB path (for instance by using   
the MATLAB Path Browser). 

• If you use version 2 of SIMULINK then replace the file  ...\polynomial\
polblock.mdl, residing in the main Polynomial Toolbox directory, by the 
file ...\polynomial\simulink2\polblock.mdl. The current version 
of SIMULINK can be checked by typing “ver simulink” in the MATLAB 
main window.  

• You are recommended to add a new line to your startup.m file containing 
the command PINIT. With this modification the Polynomial Toolbox is 
automatically initialized at the beginning of every MATLAB session. If you do 
not do this then you will have to type PINIT manually each time you start a 
Polynomial Toolbox session. 

• When using the Polynomial Toolbox for the first time after installation you will 
be asked to provide your personal license number. 

Windows plat-
forms 
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• The standard configuration of the Polynomial Toolbox contains an Acrobat 
Reader placed in the folder ...\polynomial\Pdf-files\Acrobat
4.0, which guarantees easy use of the on-line documentation by the POLD-
ESK command. This configuration requires no action during the installation 
and it is recommended for most users. For more details on using the on-line 
documentation see the section Documentation. 

• Delete any existing Polynomial Toolbox Version 2.0 (the existing directory  
.../polynomial and its contents). 

• Copy the whole directory /polynomial including all its contents from the Poly-
nomial Toolbox CD-ROM Version 2.5 to your system, preferably next to the 
other MATLAB toolboxes that all are placed in  the directory 
.../MATLABR12/ toolbox or  .../MATLABR11/toolbox or 
.../MATLAB/toolbox. 

• Add the directory .../polynomial to your MATLAB path. 

• If you use version 2 of SIMULINK then replace the file ...polynomial/
polblock.mdl, residing in the main Polynomial Toolbox directory, by the 
file .../polynomial/simulink2/polblock.mdl. The current version 
of SIMULINK may be checked by typing “ver simulink” in the MATLAB 
main window.  

• You are recommended to add a new line to your startup.m file containing 
the command PINIT. With this modification the Polynomial Toolbox is 
automatically initialized at the beginning of every MATLAB session. If you do 
not do this then you will have to type PINIT manually each time you start a 
new Polynomial Toolbox session. 

UNIX platforms 
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 Upgrading instructions 

• When using the Polynomial Toolbox for the first time after installation you will 
be asked to provide your personal license number. 

• To access the Polynomial Toolbox on-line documentation by the command 
POLDESK your UNIX system is supposed to run Acrobat Reader by the usual 
command “acroread.” If this is not the case then you must create such an 
alias, or ask your system administrator for help. For more details on using 
the on-line documentation see the section Documentation.  

Upgrading instructions 

Older versions of the Polynomial Toolbox 2.x may be upgraded to Version 2.5 by 
executing the following steps. 

• Make sure that your current folder ...\polynomial and all its contents are 
not read-only. You can check this by right-clicking a few files and viewing the 
properties sheet. To disable the read-only attribute of all files and folders in 
the Polynomial Toolbox right-click the top level Polynomial Toolbox folder 
...\ polynomial and open the properties sheet. Uncheck the box “Read-
only” and click on OK. In some versions of Windows you can now select the 
option “Apply changes to this folder, subfolders and files” and again click on 
OK. If this option is not available then repeat the procedure for all subfolders 
of ...\ polynomial. Alternatively, you may open a DOS-box, change to 
the folder ...\ polynomial, and type the command “attrib -r *.*
/s /d” to disable the read-only attribute of all files and folders in the Poly-
nomial Toolbox. 

Windows plat-
forms 
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 Upgrading instructions 

• Copy the entire contents of the folder upgrade\polynomial including all 
subfolders from the Polynomial Toolbox CD-ROM Version 2.5 to your PC 
over the contents of the existing folder ...\polynomial. 

• If you still use version 2 of SIMULINK then replace the file 
...\polynomial\ polblock.mdl, residing in the main Polynomial Tool-
box directory, with the file  
...\polynomial\simulink2\polblock.mdl. You may check the cur-
rent version of SIMULINK by typing “ver simulink” in the MATLAB main 
window.  

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder 
...\polynomial including its contents) and then install Version 2.5 following the 
“New installation instructions.” In this case you will be asked to provide your per-
sonal license number. 

• Make sure that your current directory  .../polynomial and all its contents 
are write enabled. Check this by moving to the directory .../polynomial, 
typing “ll” and inspecting the w flag. If the w flag is not present in the user 
access persissions for all files then type “chmod u+w *” to set it. Repeat 
this for all sub-directories. 

• Copy the entire contents of the directory upgrade/polynomial including 
all subfolders from the Polynomial Toolbox CD-ROM Version 2.5 to your 
computer over the contents of the existing directory .../polynomial. 

• If you still use version 2 of SIMULINK then replace the file 
.../polynomial/ polblock.mdl, residing in the main Polynomial Tool-
box directory, with the file  

UNIX platforms 
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 Documentation 

.../polynomial/simulink2/polblock.mdl. You may check the cur-
rent version of SIMULINK by typing "ver simulink" in the MATLAB main 
window. 

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder 
...\polynomial including its contents) and then install Version 2.5 following the 
“New installation instructions.” In this case you will be asked to provide your per-
sonal license number. 

Documentation 

Three document volumes are provided with the Polynomial Toolbox: Manual, Com-
mands, and Version 2.5 Upgrade Information. The printed Manual and Version 2.5 
Upgrade Information volumes are delivered with the Polynomial Toolbox CD-ROM. 
The printed Commands volume may be purchased separately (see the PolyX 
website or contact info@polyx.cz).  
Ready-to-print electronic versions of the Manual, Commands and Version 2.5 Up-
grade Information are also available. They may be found in 
...\polynomial\Pdf-files in the files manual.pdf, commands.pdf and 
upgradeinfo25.pdf. The files are all readable by Acrobat Reader. Users are 
welcome to print these files for their own use but should not distribute them any 
further. For more copyright details see the License Agreement.  

On-line electronic versions of the Manual, Commands and Version 2.5 Upgrade 
Information are also provided. They are located in the folder 
...\polynomial\Pdf-files in the files OnLineManual.pdf, OnLine-
Commands.pdf and OnLineUpgradeInfo25.pdf. They are normally accessed 
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 A note for SIMULINK 3 users on Windows platforms 

by the Polynomial Toolbox command POLDESK but users are free to create other 
arrangements. 

On Windows Platforms, POLDESK by default uses Acrobat Reader located in the 
Polynomial Toolbox folder ...\polynomial\Pdf-files\Acrobat 4.0 . This 
configuration is generally recommended. If an experienced user wishes to employ 
a different version of Acrobat Reader located elsewhere then the entire folder 
...\polynomial\Pdf-files\Acrobat 4.0 may simply be deleted. During 
the next execution POLDESK will look for Acrobat Reader in the standard location 
C:\Program Files\ Adobe\Acrobat 4.0\Reader\ AcroRd32.exe or will 
ask the user to provide a valid path name. 

On UNIX Platforms, POLDESK by default calls the command “acroread” that typi-
cally runs Acrobat Reader on a UNIX system. If this alias is not recognized then the 
user or a system administrator may create such an alias. 

Alternatively, the user of each system may type POLDESK RECOVER. This opens a 
dialogue window where the user can type in a valid pathname. 

A note for SIMULINK 3 users on Windows platforms 

Under the MS Windows operating systems the way the “simulink” command is 
processed differs slightly in versions 2 and 3 or 4 of SIMULINK. The instructions in 
the Polynomial Toolbox 2.0 Manual (pages 83–84) refer to version 2 of SIMULINK. 
If you use SIMULINK 3 or 4 under Windows then please proceed in one of the two 
following ways: 

1. Type  
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 » simulink

to open the Simulink Library browser. The Polynomial Toolbox 2.0 Simulink 
library now is directly accessible within the browser along with the other 
Simulink libraries.  

2. Type  
 » simulink3

to open the Simulink Library window. Follow the instructions in the Polyno-
mial Toolbox 2.0 Manual, pages 83–84. 

 For further information consult the SIMULINK manual (Using Simulink, Version 3). 

Compatibility with MATLAB version 6 

The Polynomial Toolbox 2.5 works well with the MATLAB Release 12 products MAT-
LAB 6 and Simulink 4. In fact, some functions are up to two times faster with MAT-
LAB 6 than before. 

MATLAB 6 users will see the Polynomial Toolbox icon in their MATLAB Launch Pad 
window among the other MATLAB toolboxes they may have. The Polynomial Tool-
box help functions, demos, Polynomial Matrix Editor and PolyX web site may be 
directly accessed from the Launch Pad window. 
Clicking a POL object icon in the MATLAB Workspace window does not open the 
object in an array editor. We hope to fix this shortcoming in the future but the re-
lated MATLAB code is not open for us currently. Instead, type PME in the command 
window and open the object in the Polynomial Matrix Editor. 
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What is New in Version 2.5? 
Overview 

Version 2.5 features the following enhancements. 

• Bug fixes to Version 2.0 

• Improved algorithms and other internal changes 

• New display formats 

• Several new functions 

• Miscellaneous updates and modifications 

Bug fixes 

Version 2.5 includes a number of bug fixes. In particular, it includes all patches that 
were made available on the PolyX website since the release of Version 2.0. 

Improved algorithms and other internal changes 

Several algorithms have been improved in Version 2.5 to reflect recent research 
achievements. In particular, the linear polynomial matrix equation solvers axb, 
axbyc, xab, xaybc, and axxa2b perform faster, in particular for large matrices. 
These modifications have no impact on the way the functions are used and hence 
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 New display formats 

require no attention on the part of the user. In particular, no changes were made in 
the numbers of input and output arguments and their order. 

New display formats 

Version 2.5 includes several additional display formats for polynomial matrices.  

pformat rootr Format a polynomial or polynomial entry as a product of 
real first- and second-order factors 

pformat rootc Format a polynomial or polynomial entry as a product of 
first-order factors 

pdisp Display a polynomial matrix without printing the name     

New functions 

Several new functions were added in Version 2.5. 
The new routine pol2tex is a great help for authors who use LaTeX. 

pol2tex Formats a polynomial matrix for use in a LaTeX document 

 
Version 2.5 offers two new solutions for the standard 2H  problem under quite gen-
eral conditions. 

h2 Polynomial solution of the standard 2H  optimization prob-
l

LaTeX format-
ting of polyno-
mial matrices 

H2 optimization 
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lem 

dssh2 Descriptor solution of the standard 2H  optimization prob-
lem 

Version 2.5 adds the following new macros to the already impressive list of routines 
for testing the stability of interval polynomials 

jury Create the Jury matrix corresponding to a polynomial 

sarea, sareaplot Robust stability area for polynomials with parametric un-
certainties 

spherplot Plot the value set ellipses for a spherical polynomial family 

tsyp Use the Tsypkin-Polyak function to determine the ∞  ro-
bustness margin for a continuous interval polynomial 

vset,vsetplot Value set of parametric polynomial. A tool for robust stabil-
ity testing via Zero Exclusion Condition 

Version 2.5 includes two polynomial methods for state space systems 

psseig Polynomial approach to eigenstructure assignment for state-
space system 

psslqr Polynomial approach to linear-quadratic regulator design for 
state-space system 

Interval poly-
nomials 

State space 
systems 
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 New functions 

Two brand new routines allow the automatic conversion of SIMULINK block dia-
grams to LMF and RMF descriptions. 

sim2lmf Simulink-to-LMF description of a dynamic system 

sim2rmf Simulink-to-RMF description of a dynamic system 

Version 2.5 includes two upgrades of existing numerical utilities and a new numeri-
cal function. 

clements1 Conversion to Clements standard form (upgrade of clements) 

dssreg “Regularizes” a standard descriptor plant (upgrade) 

gare Solution of the generalized algebraic Riccati equation 

The function complete is a new addition to the collection of polynomial matrix 
functions. 

complete Complete a non-square polynomial matrix to a square unimodu-
lar matrix 

Three new text based demos have been included in Version 2.5. They are self-
explanatory and no documentation is available. Simply type the name of the demo 
in the command line. 

poldemo This demo reviews several of the functions and operations de-
fined in the Polynomial Toolbox for polynomials and polynomial 
matrices 

Simulink rou-
tines 

Numerical rou-
tines 

Polynomial ma-
trix functions 

Demos and 
shows 
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poldemodebe Design of a dead-beat compensator 

poldemodet Comparison between numerical and symbolic computation of 
determinant of a polynomial matrix. This demo requires the Sym-
bolic Toolbox to be installed 

In addition two “shows” have been prepared that run in a graphical interface. Enter 
the name of the show in the command line to view the show. No additional 
documentation is available. 

poltutorshow Introduction into the basic operations with polynomials and poly-
nomial matrices. This is a graphical version of the text based 
demo poldemo 

polrobustshow Overview of parametric robust control tools 

Miscellaneous updates and modifications 

This section lists modifications in various macros that were made after Version 2.0 
was released. The changes leave the macros fully compatible with Version 2.0 and 
are all reflected in the on-line help. 

There are a number of improvements in axxab. 

• By default, the macro axxab now returns a solution with triangular leading 
coefficient matrix (in the continuous-time case) or triangular constant coef-

axxab 
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ficient matrix (in the discrete-time case). The option 'tri' is no longer effec-
tive but still valid for compatibility reasons. 

• By default, the macro now uses the sparse linear system solver and per-
forms no preliminary rank check. 

• The new option ′chk′ turns the preliminary rank check on and activates 
MATLAB’s built-in standard (non-sparse) linear system solver. 

The macro cgivens1 differs from the implementation in Version 2.5 by the intro-
duction of an optional tolerance tol. The default value of tol is 0. In the form 

[c,s] = cgivens1(x,y,tol)

the routine sets x and y equal to zero if their magnitude is less than tol. 

Unimodular polynomial matrices and constant non-polynomial matrices are now 
considered to be stable, and not unstable as in Version 2.0. 

The macro prand has two new options. 

• The option ′mon′ generates a monic polynomial matrix. 

• The option ′pos′ generates a polynomial matrix with the required number 
of zeros. In particular, the call  
   P = prand(degP,I,'pos'[,zeros_vector])     
generates a square I-by-I  polynomial matrix P but now degP means the 
required number of zeros, including multiplicities. Some zeros can be fixed 
a priori by the optional vector zeros_vector.  Complex conjugate com-
plex parts are added if necessary. 

The function call  

cgivens1 

isstable 

prand 

reverse 
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reverse(P)

with the single input argument P, reverses the order of the coefficients. Thus, if 

= + + +0 1( ) n
nP s P P s P s  

then  

Q = reverse(P) 

returns 

−= + + +1 0( ) n
n nQ s P P s P s  

Zeroing management has been changed in this macro. Now, no zeroing is per-
formed by default. However, an optional tolerance tol may be passed to the 
macro in one of the forms 

P = root2pol(Z,K,tol)

or 

P = root2pol(Z,K,tol,var)

In this case all coefficients of the resulting polynomial that are less than tol times  
the largest coefficient are neglected. Note that if the tolerance argument is included 
both the input argument Z and K needs to be present. 
The on-line help has been modified to emphasize that the routine does not work 
with complex polynomials. 

 

root2pol 

stabint 
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New Functions in Version 2.5 of the 
Polynomial Toolbox 

This chapter documents the new functions of Version 2.5 of the Polynomial Tool-
box. 
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clements1 

Transformation of a para-Hermitian pencil to Clements form 

[C,u,p] = clements1(P)

[C,u,p] = clements1(P,q)

[C,u,p] = clements1(P,q,tol) 

The command  
[C,u,p] = clements1(P,q,tol)

transforms the para-Hermitian nonsingular real pencil P(s) = sE + A to Clements 
standard form C according to 

C(s) = u(sE + A)uT = se + a 
The matrix u is orthogonal. The pencil C has the form 

 +
 

= + = + 
 
− + − + +  

1 1

2 3 3

1 1 3 3 4 4

0 0
( ) 0

T T T T

se a
C s se a a se a

se a se a se a

 

The pencil +1 1se a  has size ×p p  and its finite roots have nonnegative real parts. 
The matrix 2a  is diagonal with the diagonal entries in order of increasing value. 
If the optional input argument q is not present then 2a  has the largest possible 
size. If q is present and the largest possible size of 2a  is greater than ×q q  then – 

Purpose 
Syntax 

Description 
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if possible – the size of 2a  is reduced to ×q q . Setting q = Inf has the same effect 
as omitting the second input argument. 

The optional input parameter tol defines a relative tolerance with default value 
1e-10. It is used to test whether eigenvalues of the pencil are zero, have zero 
imaginary part, or are infinite, and for other tests. For compatibility with an earlier 
version of the macro a tolerance parameter of the form [tol1 tol2] is also 
accepted but only the first entry is used. 

This version is backward compatible with the earlier version (named clement in 
Version 2.0) but also handles singular pencils and pencils with roots on the imagi-
nary axis. Because of certain modifications in the algorithm clements and 
clements1 generally do not produce the same output for the same input. 
We consider the computation of the Clements form of the para-Hermitian pencil 

− 
 − − =
 − −
 
  

100 0.01 0
0.01 0.01 0 1

( )
0 1 0

0 1 0 0

s

P s
s

 

We first input this matrix as 

P = [100 -0.01 s 0; -0.01 -0.01 0 1;-s 0 -1 0;0 1 0 0];   

and next compute its Clements form: 
[C,u,p] = clements(P);   

We have 

p, C = pzer(C)  

Compatibility 

Example 
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p =

1

C =

0 0 0 -10 + s

0 -1 0 -3.5e-005 -

0.0007s

0 0 1 -0.014 +

0.00071s

-10 - s -3.5e-005 + 0.0007s -0.014 - 0.00071s 99

We see that 

− 
+ = − =  

 
1 1 2

1 0
10,

0 1
se a s a  

Next we attempt to reduce 2a  to the smallest possible size: 

[C,u,p] = clements(P,0);   

p, C = pzer(C)   
p =

2

Polynomial matrix in s: 4-by-4, degree: 1

C =

0 0 0 -10 + s
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0 0 1 -0.01 + 5e-
006s

0 1 -0.01 -0.0099 +
0.001s

-10 - s -0.01 - 5e-006s -0.0099 - 0.001s 99  
We now have 

−

− 
+ =  

× −  
1 1 6

0 10

1 5 10 0.01

s
se a

s
 

while 2a  is the empty matrix. 

The algorithm is described in Clements (1993) and in slightly more detail in Kwak-
ernaak (1998). The extension to roots on the imaginary axis is described in Kwak-
ernaak (2000). 

Clements, D. J. (1993), “Rational spectral factorization using state-space methods.” 
Systems & Control Letters, vol. 20, pp. 335–343. 

Kwakernaak, H. (1998), “Frequency domain solution of the ∞H  problem for de-
scriptor systems.” In Y. Yamamoto and S. Hara, Eds.,  Learning, Control and Hy-
brid Systems, Lecture Notes in Control and Information Sciences, vol. 241, 
Springer, London, etc. 

H. Kwakernaak (2000), “A Descriptor Algorithm for the Spectral Factorization of 
Polynomial Matrices.” Third IFAC Symposium on Robust Control System Design 
ROCOND 2000, Prague, June 21–23, 2000. 

The macro displays error messages in the following situations:  

Algorithm 

References 

Diagnostics 
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• The input matrix is not a square pencil 

• The input matrix is not real 

• The input pencil is not para-Hermitian 

• An eigenvalue on the imaginary axis cannot be deflated 
A warning message is issued if the relative residue exceeds 1e-6. The “relative 
residue” is the norm of the juxtaposition of the (1,1) and (1,2) blocks of C divided by 
the norm of P.  

dsshinf ∞H -suboptimal compensators for descriptor systems 

gare Solution of generalized algebraic Riccati equations 

 

See also 
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complete 

Complete a nonsquare polynomial matrix to a unimodular matrix 

[U,V] = complete(Q,[tol])   

If Q is a tall polynomial matrix then the command 

[U,V] = complete(Q)

produces a unimodular matrix U of the form U = [Q R]. If Q is wide then the uni-
modular matrix U has the form U = [Q; R]. V is the inverse of U. 

If Q does not have full rank or is not prime then no unimodular matrix U exists and 
an error message follows. Also if Q is square non-unimodular an error is reported. 

The optional input argument tol is the tolerance used for the row or column reduc-
tion of Q that is part of the algorithm. 

This is a new function in the Polynomial Toolbox. 

A tall polynomial matrix Q with column degrees 2 and 1 and dimensions ×3 2  is 
generated by the command 

Q = prand([2 1],3,2)   
Q =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s   

Q is completed to a unimodular matrix U by typing 

Purpose 
Syntax 
Description 

Compatibility 
Example 
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[U,V] = complete(Q);

U   

U =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s 0.2 +
0.00074s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s 0.4 +
0.016s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s 1 + 0.036s  
It may be verified that U is unimodular and that V is its inverse by successively 
typing 

det(U)   

Constant polynomial matrix: 1-by-1

ans =

-0.73   

U*V   

Constant polynomial matrix: 3-by-3

ans =

1 0 0

0 1 0

0 0 1   



 New Functions in Version 2.5 of the Polynomial Toolbox  

 complete 

Let Q be a full rank ×n k  polynomial matrix, with >n k . We wish to find an 
× −( )n n k  polynomial matrix R such that   Q R  is unimodular. Let U be a uni-

modular matrix which reduces Q to the extended row-reduced form 

 
=  
 0

oQ
UQ  

If the ×k k  matrix oQ  is a constant matrix then it is nonsingular and the desired 
unimodular completion exists. Otherwise, the completion does not exist. The row 
reduction algorithm also yields the inverse −= 1V U  of U. Redefine 

−   
= =   
    

1 00: , :
00
oo QQU U V V

II
 

and partition =   1 2V V V . Then 

   
= =   
   

2
0

,
0
I

UQ UV
I

 

Hence, the desired completion is 

  2Q V  

and its inverse is U. 

If Q is not tall but wide then the algorithm is applied to the transpose of Q. 
The macro complete issues error messages if 

 The input matrix is square non-unimodular 

Algorithm 

Diagnostics 
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 complete 

 The input matrix cannot be completed to a unimodular matrix because it is 
not prime 

 The input matrix does not have full rank 

colred, rowred Reduction to column or row reduced form 

 

See also 
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dssh2 

Descriptor solution of the H2 problem 

[Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

The command 
    [Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

solves the H2 optimization problem for the standard plant 
−= − +1( ) ( )G s C sE A B D   

with nmeas measured outputs and ncon control inputs. The optimal compensator 
is given by 

−= − +1( ) ( )k k k k kK s C sE A B D  
The optional parameter tol is a tolerance with default value 1e-10. 

Conditions on the input data: If D is partitioned as 

 
=  
 

11 12

21 22

D D
D

D D
 

where 12D  has ncon columns and 21D  has nmeas rows, then 12D  needs to have 
full column rank and 21D  full row rank, and 22D  should be the zero matrix. Use the 
command dssreg with the option 'D22' to “regularize” the system if these condi-
tions are not met. 

This function is new in the Polynomial Toolbox. 

Purpose 
Syntax 
Description 

Compatibility 
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2H  design problem 
Consider the block diagram of Fig. 1.  The plant is a MIMO system with transfer 
matrix 

 
 + =
 
 + 

2
1 1

2( )
10

2

ssP s

s

 

The controlled output is 

  
=  
 

11

12

z
z

z
 

The measured output  

 
=  
 

1

2

y
y

y
 

is corrupted by colored measurement noise generated by the two shaping 
filters with transfer functions 

Example 
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Fig. 1. Design problem 

+
1

1 /10s
    and    

+
1

1 / 20s
 

The second component of the disturbance 
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=  
 

1

2

v
v

v
 

is passed through a shaping filter with transfer function 1/ s  to ensure integrating 
action on both input channels. The input 

 
=  
 

1

2

u
u

u
 

is weighted with dynamic weighting functions with transfer functions +1(1 )c rs  (to 
ensure sufficient high-frequency roll-off of the compensator) and 2c s  (both for 
high-frequency roll-off and to allow integral control at the second input channel). 

The generalized plant that defines the 2H  problem is given by 

 
 + + 
 
 + + 
 + 

= =   
   

 
 

+ + + 
 
 

+ + +  

2 2

11 12 1

21 22 2

2 2

1 1 1 10 0
( 2) 2

1 10 0 0 0
( 2) 2

( ) ( ) 0 0 0 0 (1 ) 0
( )

( ) ( ) 0 0 0 0 0
1 1 1 1 10

( 2) 1 /10 2
1 1 10 0 0

( 2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s
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The transfer matrix may be entered in rational format, converted to a left polyno-
mial matrix fraction by the command rat2lmf and after this converted to descrip-
tor representation by the command lmf2dss: 

c1 = 1; c2 = 1; r = 5;

Num = [ 1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1 ];

Den = [ s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

1 s*(s+2) 1 1+s/20 1 s+2 ];

[N,D] = rat2lmf(Num,Den);

[a,b,c,d,e] = lmf2dss(N,D)

a =

Columns 1 through 7
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0 1.0000 -1.7638 0 0 0
0

0 0 0 0 0 0
0

0 0 -2.0000 1.0000 0 0
0

0 0 0 0 0 0
0

0 0 0 0 -10.0000 0
0

0 0 -0.0000 0 0 -20.0000
0

0 0 0 0 0 0
1.0000

0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0 0 0 0 0
0

Columns 8 through 10

0 0 0
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0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1.0000 0 0

0 1.0000 0

0 0 1.0000

b =

0 0 0 0 0 0.3333

0.3333 0.3333 0 0 0.3333 0

0 0 0 0 0 0.3780

0 0.3780 0 0 0 0

0 0 -0.5754 0 0 0

0 0 0 -0.5769 0 0

0 0 0 0 0 0

0 0 0 0 5.0000 0

0 0 0 0 0 0

0 0 0 0 0 1.0000
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c =

Columns 1 through 7

3.0000 0 0 0 0 0
0

0 0 2.6458 0 0 0
0

0 0 0 0 0 0 -
1.0000

0 0 0 0 0 0
0

-3.0000 0 0 0 17.3781 0
0

0 0 -2.6458 0 0 34.6699
0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

0 -1.0000 0

0 0 0

0 0 0
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d =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

e =

1 0 0 0 0 0 0 0 0
0

0 1 0 0 0 0 0 0 0
0

0 0 1 0 0 0 0 0 0
0

0 0 0 1 0 0 0 0 0
0

0 0 0 0 1 0 0 0 0
0

0 0 0 0 0 1 0 0 0
0
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0 0 0 0 0 0 0 1 0
0

0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0 0
0 

The descriptor representation does not satisfy the regularity assumptions, This is 
corrected with the help of the command 

[a1,b1,c1,d1,e1] = dssreg(a,b,c,d,e,2,2,'D22');

Following this the solution of the 2H  problem follows by typing 

[yd,xd] = dss2rmf(ak,bk,ck,dk,ek);

We suppress the rather copious output. The compensator may be converted to 
rational form by the commands 

[Y,X] = dss2rmf(ak,bk,ck,dk,ek);
[NumK,DenK] = rmf2rat(Y,X);  

The compensator is given by 
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+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058
4.4 13 17 14 5.6 (4.4 13 17 14 5.6 )

( )
0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s
s s s s s s s s s s s

K s
s s s s s s s s
s s s s s

 
 
 
 

+ 
 + + + + + 

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6 )
s s

s s s s s s

 

The solution is obtained by a mixed state space and polynomial matrix solution  
(Kwakernaak, 2000). 

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust 
Control Design,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 
21–23 June 2000, Prague, Czech Republic. 
The macro dssh2 issues error messages if 

 The input data have inconsistent dimensions 

 The matrix D does not satisfy the regularity conditions 
 The plant has unstable fixed poles 

 The generalized plant has marginally stable fixed poles that cannot be 
cancelled 

 The closed-loop transfer matrix cannot be made strictly proper 

dssreg Regularization of a descriptor system 

h2 Polynomial solution of the standard 2H  problem 

gare Solution of Generalized Algebraic Riccati Equations 

Algorithm 

Reference 

Diagnostics 

See also 
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dsshinf ∞H  suboptimal compensator for descriptor systems 

mixeds Solution of a SISO ∞H  mixed sensitivity problem 

plqg Polynomial solution of a MIMO LQG problem 

splqg Polynomial solution of a SISO LQG problem 
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“Regularization” of a standard descriptor plant 

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] =
dssreg(A,B,C,D,E,nmeas,ncon[,tol][,option1][,option2]) 

The commands 

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon,tol) 

transform the generalized plant 

 
= +  

 
   

= +   
   

w
Ex Ax B

u

z w
Cx D

y u

  

where the dimension of y is nmeas and the dimension of u is ncon, into an equiva-
lent generalized plant  

 
= +  

 
   

= +   
   

w
ex ax b

u

z w
cx d

y u

  

Purpose 
Syntax 

Description 
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with 
d = [d11 d12

d21 d22] 
such that d12 has full column rank and d21 has full row rank. “Equivalent” means 
that the two plants have the same transfer matrices. 
The optional tolerance parameter tol is used in the various rank tests. It has the 
default value 1e-12. 
Two options may be included. The option 'D11' modifies the representation so 
that the term with d11 is absent. The option 'D22' removes the term with d22. 
In verbose mode the routine displays a relative error based on the largest of the 
differences of the frequency response matrices of the transformed and the original 
plant at the frequencies 1, 2, ..., 10. 

This version of dssreg is backward compatible with the version of Version 2.0 of 
the Toolbox. The only difference is that the options 'D11' and D22' have been 
added. 

In the Example section of the manual page for the Polynomial Toolbox command 
dsshinf the descriptor representation of a generalized plant is derived. When 
considering the subsystem  

= +2 (1 )z c rs u  
two pseudo state variables are defined as = =3 4,x u x u , which leads to the 
descriptor equations 

Compatibility 

Examples 



 New Functions in Version 2.5 of the Polynomial Toolbox  

 dssreg 

=
= − +

3 4

30
x x

x u
 

The output equation is rendered as  
= + = +2 4(1 )z c rs u crx cu  

The output equation, however, equally well could be chosen as 
= + = +2 3 4(1 )z c rs u cx crx  

This brings the generalized plant in the form 

       
                = +                  

−                

1 1

2 2

3 3

4 4

1 0 0 0 0 1 0 0 2 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1

x x
x x w
x x u
x x

E A B

 

 
              = +               − −        

1
1

2
2

3

4

1 0 0 0 1 0
0 0 0 0
1 0 0 0 1 0

x
z

x w
z c cr

x u
y

x
DC

 

For this plant we have 

 
= = − 
 

12 21
0

, 1
0

D D  
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so that 12D  does not have full rank. We apply dssreg to this plant for c = 0.1, r = 
0.1. 

c = 0.1; r = 0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 c c*r; -1 0 0 0];

D = [1 0; 0 0; -1 0];

ncon = 1; nmeas = 1;   
We now apply dssreg. 

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)   

a =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 -1 0

b =

1.4142 0

1.0000 1.0000

0 1.0000
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0 1.0000

c =

1.0000 0 0 0

0 0 0.1000 0.0100

-1.0000 0 0 0

d =

1.0000 0

0 0.0100

-1.0000 0

e =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0   

We now have 

 
= = − 
 

12 21
0

, 1
1

D D  

so that the transformed plant is “regular.”  

As a second example we consider the standard plant 
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= +     

 
   

=   
   

1 1

1
1

w
x x

u

z
x

y

 

for which neither 12D  nor 21D  has full rank. We obtain the following result. 

E = 1; A = 1; B = [1 1]; C = [1; 1]; D = [0 0;0 0];

nmeas = 1; ncon = 1;

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)   

a =

1 0 0

0 1 0

0 0 1

b =

1 1

0 1

1 0

c =

1 1 0

1 0 1

d =
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0 1

1 0

e =

1 0 0

0 0 0

0 0 0   

Instead of a state representation of dimension 1 we now have a 3-dimensional 
descriptor representation, which, however, is “regular.” 

Finally, consider the system 
= + = =, ,x u v z v y u  

Accordingly, we let 
» E

E =

1

» A

A =

0

» B

B =

1 1
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» C

C =

0

0

» D

D =

1 0

0 1

We successively have

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1); length(a),d

ans =

3

d =

1 1

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11'); length(a),d

ans =

4

d =

0 1
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1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11','D22');
length(a),d

ans =

5

d =

0 1

1 0 

First consider the case that 21D  does not have full row rank.  
Let the rows of the matrix N span the left null space of E, so that NE = 0. Then by 
multiplying the descriptor equation = + +1 2Ex Ax B w B u  on the left by N we obtain 
the set of algebraic equations = + +1 20 NAx NB w NB u . By adding suitable linear 
combinations of the rows of this set of equations to the rows of the output equation 

= + +2 21 22y C x D w D u  the rank of 21D  may be increased without increasing the 
dimension of the pseudo state x. 

If after this operation 21D  still does not have full row rank then we apply a suitable 
transformation to the output equation = + +2 21 22y C x D w D u  so that it takes the 
form 

      
= = + +      

      
1 21 221211

2 22 2220
y C DD

y x w u
y C D

 

where 211D  has full row rank. It is easy to construct a matrix 212D  so that 

Algorithm 
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211

212

D
D

 

has full row rank. Following this we redefine the output equation as 

         ′= = + + +        
        

1 21 211 221

2 22 212 222

0y C D D
y x x w u

y C D DI
 

where ′x  is an additional component of the pseudo state. This component is ac-
counted for by adding the algebraic equation 

′= + 2120 x D w  
to the descriptor equation. This increases the dimension of the pseudo state, of 
course. 
If 12D  does not have full rank then the procedure as described is applied to the 
“dual” system. 
If, say, 22D  is nonzero then we use singular value decomposition to write 

=22D USV , where S is square nonsingular. Adding the equation ′ =x SVu  to the 
descriptor equations we may now rewrite the equation for y as 

′= + + = + +1 21 22 1 21y C x D v D u C x Ux D v  
If needed, 11D  is similarly removed.  

The macro dssreg displays error messages in the following situations. 

• The input parameters have inconsistent dimensions. 

• 12D  is not tall or 21D  is not wide. 

Diagnostics 
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• The relative error exceeds 1e-6. The relative error is computed on the basis of 
the largest of the differences of the frequency responses of the system before 
and after regularization at the frequencies 1, 2, …, 10. 

In verbose mode the relative error is always reported. 

dssrch ∞H optimization for a descriptor plant 

dssmin dimension reduction of a descriptor system 

dssh2 2H  optimization of a descriptor system 

 

See also 
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gare 

Generalized algebraic Riccati equation 

[X,F] = gare(A,B,C,D,E,Q,R,tol);

This routine computes the solution X of the generalized algebraic Riccati equation  
−+ + − + + =

=

1( ) ( ) 0T T T T T T T

T T
X A A X C QC X B C D R B X D C

X E E X
 

and the gain 
−= +1( )T TF R B X D C  

such that the feedback law = −u Fx  stabilizes the descriptor system  

= +Ex Ax Bu  
and makes the impulsive modes non-impulsive. Finite closed-loop poles on the 
imaginary axis are allowed. If the descriptor system is not stabilizable or impulse 
controllable then X is returned as a matrix filled with Infs. In this case F still has a 
well-defined solution. The corresponding feedback law stabilizes the stabilizable 
modes and makes the controllable impulsive modes non-impulsive. 

The optional tolerance tol is used by the routine clements and also to test 
whether the GARE has a finite solution. Its default value is 1e-12. 

This function is new in the Polynomial Toolbox. 
Let 

Purpose 
Syntax 
Description 

Compatibility 
Example 
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= = =     
     

= =  

1 0 1 0 1
, ,

0 1 0 2 0
2 1 , 1

E A B

C D
 

= 1Q , = 1R . The system has an uncontrollable mode with eigenvalue 2. Accord-
ingly, we obtain 

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

Inf Inf

Inf Inf

F =

2 0

» roots(s*E-A+B*F)

ans =

2.0000

-1.0000

On the other hand, 

     
= = =     −     

= =  

1 0 0 1 0
, ,

0 0 1 0 1
0 1 , 1

E A B

C D
 

is controllable. We now have 
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» [X,F] = gare(A,B,C,D,E,Q,R)

X =

1.0e-015 *

0 0

-0.0754 -0.1601

F =

-0.0000 1.0000

» roots(s*E-A+B*F)

ans =

-1.0000 
The algorithm for the solution of the GARE relies on transforming the associated 
Hamiltonian pencil to Clements form (Kwakernaak, 2000). 
Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust 
Control Design,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 
21–23 June 2000, Prague, Czech Republic. 

The macro gare issues error messages if the input data have inconsistent dimen-
sions. 

clements Clements transformation of a matrix pencil 

 

Algorithm 

Reference 

Diagnostics 

See also 
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h2 

H2-optimization 

[Y,X,clpoles,fixed] = H2(N,D,nmeas,ncon[,tol][,’check’])

Given a continuous-time generalized plant of the form 

    
=     

    
11 12

21 22

G Gz w
G Gy u

G

 

with G represented in the left coprime polynomial matrix fraction  form −= 1G D N , 
the command  

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas)

computes the compensator =u Ky  in right polynomial matrix fraction form 
−= 1K YX  that minimizes the 2-norm 2H  of the closed-loop transfer matrix 

−= + − 1
11 12 22 21( )H G G I KG KG  

from v to z. The norm is defined by 
∞

−∞

= −∫ ω ω ω
π

2
2

1 tr ( ) ( )
2

TH H j H j d  

Purpose 
Syntax 
Description 
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Fig. 2 . Generalized plant 

The input parameter ncon is the number of control inputs and nmeas is the num-
ber of measured outputs. The output parameter clpoles contains the (non-fixed) 
closed-loop poles and fixed the fixed-plant poles.  

In the optional forms 

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol)

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,'check')

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol,'check') 
the parameter tol is a tolerance. Its default value is 1e-8. If the option 'check' is 
present then the routine checks whether the 2H  optimization problem has a solu-
tion, and exits if no solution exists. If the option is not invoked then the routine pro-
duces a solution even if none exists. In the latter case the closed-loop transfer 
matrix either has poles on the imaginary axis or is not strictly proper. 
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Nonproper generalized plants are allowed. Fixed open-loop poles (that is, uncon-
trollable or unobservable poles) cannot have strictly positive real parts but may be 
located on the imaginary axis. 

This function is new in the Polynomial Toolbox. 

Example 1: 2H  design problem 
Consider the block diagram of Fig. 1.  The plant is a MIMO system with transfer 
matrix 

 
 + =
 
 + 

2
1 1

2( )
10

2

ssP s

s

 

The controlled output is 

  
=  
 

11

12

z
z

z
 

The measured output  

 
=  
 

1

2

y
y

y
 

is corrupted by colored measurement noise generated by the two shaping filters 
with transfer functions 

Compatibility 
Examples 
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Fig. 3. Design problem 

+
1

1 /10s
    and    

+
1

1 / 20s
 

The second component of the disturbance 
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=  
 

1

2

v
v

v
 

is passed through a shaping filter with transfer function 1/ s  to ensure integrating 
action on both input channels. The input 

 
=  
 

1

2

u
u

u
 

is weighted with dynamic weighting functions with transfer functions +1(1 )c rs  (to 
ensure sufficient high-frequency roll-off of the compensator) and 2c s  (both for 
high-frequency roll-off and to allow integral control at the second input channel). 

The generalized plant that defines the 2H  problem is given by 

 
 + + 
 
 + + 
 + 

= =   
   

 
 

+ + + 
 
 

+ + +  

2 2

11 12 1

21 22 2

2 2

1 1 1 10 0
( 2) 2

1 10 0 0 0
( 2) 2

( ) ( ) 0 0 0 0 (1 ) 0
( )

( ) ( ) 0 0 0 0 0
1 1 1 1 10

( 2) 1 /10 2
1 1 10 0 0

( 2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s
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The transfer matrix may be entered in rational format and then converted to a left 
polynomial matrix fraction by the command rat2lmf:

c1 = 1; c2 = 1; r = 5;

Num = [ 1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1 ];

Den = [ s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

1 s*(s+2) 1 1+s/20 1 s+2 ];

[N,D] = rat2lmf(Num,Den)  

N =

0 0 0 0 0.2 + s 0

0 0 0 0 0 s
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1 20 + s 0 0 0 20 +
s   

The solution of the 2H  problem follows by typing 
[Y,X,clpoles,fixedpoles] = H2(N,D,2,2)   

Y =

0.044 + 0.25s + 0.023s^2 0.014 + 0.042s +
0.0022s^2

0.54 + 0.4s + 0.04s^2 -0.3 - 0.15s - 0.0065s^2

X =

0.41 + s + 0.76s^2 + 0.27s^3 0.13 - 0.12s -
0.064s^2

-0.21 + 0.16s + 0.09s^2 - 0.27s^3 -0.065 - 0.83s - s^2 -
0.38s^3

clpoles =

-1.8586

-1.8477

-0.7541 + 0.6556i

-0.7541 - 0.6556i

-0.2991 + 0.4534i

-0.2991 - 0.4534i

-0.8073
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-0.5388

-0.4545

fixedpoles =

0

-20.0000

-10.0000

The compensator may be converted to rational form by the command 
[NumK,DenK] = rmf2rat(Y,X)   

The compensator is given by 

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058
4.4 13 17 14 5.6 (4.4 13 17 14 5.6 )

( )
0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s
s s s s s s s s s s s

K s
s s s s s s s s
s s s s s

 
 
 
 

+ 
 + + + + + 

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6 )
s s

s s s s s s

 

Inspection shows that integrating action is included in the second input channel as 
intended. 

Example 2: Wiener filtering problem 

Wiener filtering problems may be defined as follows. A message signal x is given 
by 

= 1( )x H s v  
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where v is a standard white noise process. The observed signal y is related to the 
message process by 

= 2( )y H s v  

1H  and 2H  are stable rational transfer matrices. It is desired to estimate the mes-
sage signal x by filtering the observed signal y. 

 
Fig. 4. Wiener filter configuration 

Fig. 4 shows the system configuration. Inspection shows that the generalized plant 
that defines the 2H -problem is given by 

−    
=     

    
1

2 0
G

H Iz v
Hy u

 

By way of example, suppose that x and y are related as 
= +y x n  

where the  observation noise n is independent of the message signal x. The mes-
sage signal is generated by the shaping filter 
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=
+

12
1

( 1)
x v

s
 

with 1v  white noise, and the noise is given by 

=
+ +

ω σ
ζω ω

2

22 22
o

o o
n v

s s
 

where the white noise 2v  is independent of 1v . We let =ω 1o , =ζ 0.01 and 
=σ 0.1so that the measurement noise is not very large but  has a relatively sharp 

peak at the cut-off frequency of the message signal. This defines 

 
=  

+  
 

=  
+ + +  

ω σ
ζω ω

1 2

2

2 2 2 2

1( ) 0
( 1)

1( )
( 1) 2

o

o o

H s
s

H s
s s s

 

so that 

 − + 
=  
 
 + + +  

ω σ
ζω ω

2

2

2 2 2

1 0 1
( 1)

( )
1 0

( 1) 2
o

o o

s
G s

s s s

 

The following commands solve this problem:

d1 = (s+1)^2; n1 = 1;
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omo = 1; zeta = 0.01; sigma = 0.1;

d2 = s^2+2*zeta*omo*s+omo^2; n2 = omo^2*sigma;

Num = [ 1 0 -1

1 n2 0 ];

Den = [ d1 1 1

d1 d2 1 ];

[N,D] = rat2lmf(Num,Den);

[Y,X,clpoles] = H2(N,D,1,1)   

The solution is returned as

Y =

0.91 + 0.018s + 0.91s^2

X =

1 + 0.2s + s^2

clpoles =

-0.1000 + 0.9950i

-0.1000 - 0.9950i 
The command 

bode(pol2mat(Y),pol2mat(X))   

produces the Bode plot of the filter of Fig. 5. The filter is a notch filter that removes 
the colored measurement noise as best as it can. 
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Fig. 5. Bode diagram of the Wiener filter 

The solution is obtained by Wiener-Hopf optimization (Kwakernaak, 2000). 

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust 
Control Design,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 
21–23 June 2000, Prague, Czech Republic. 

The macro h2 issues error messages if 

 12G  does not have full column rank or 21G  does not have full row rank 

Algorithm 
Reference 

Diagnostics 
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 The generalized plant has unstable fixed poles 
If the option ‘check’ is activated then error messages are issued if 

 The plant has fixed poles on the imaginary axis that cannot be canceled 

 The closed-loop system transfer matrix cannot be made strictly proper 
Warning messages are issued if 

 21N  or 12N  have zeros on the imaginary axis 

 The closed-loop system has one or more poles on the imaginary axis 
The polynomial matrices 21N  and 12N   occur in the left en right coprime fractional 
representations 

− −  
= =         

   

121 112
21 22 22 21 22 22

22 22
,

G NG G D N N D
G N

 

If these polynomial matrices have roots on the imaginary axis then the two spectral 
factorizations will also involve roots on the imaginary axis, which may make the 
factorizations fail. 

dsshinf ∞H  suboptimal compensator for descriptor systems 

mixeds Solution of a SISO ∞H  mixed sensitivity problem 

plqg Polynomial solution of a MIMO LQG problem 

splqg Polynomial solution of a SISO LQG problem 

 

See also 
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jury 

Create the Jury matrix corresponding to a polynomial 

J = jury(p,k)

J = jury(p,k,'rev')

The command 

J = jury(p,k))

creates the constant Jury matrix J of dimension − × −( 1) ( 1)k k  corresponding to 
the polynomial p. If 

= + + +0 1( ) d
dp v p p v p v  

and ≤k d  then 

− −

−

− −−

− −

  
  
  
  = −
  
  
     

01 2 3 2

0 11 4 3

0 1 4 31

0 1 2 3 2

0 0 0 0
0 0 00

( )
00 0 0 0

0 0 0 0 0

k k k

k k

k kk k

k kk

pp p p p p
p pp p p p

J p
p p p pp p

p p p p pp

 

The default value of k is d. 
 With the syntax 

J = jury(p,k,'rev')

the coefficients …0 1, , , kp p p  are reversed. 

Purpose 
Syntax 

Description 
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The Jury matrix is quite useful when analysing the robust stability of discrete-time 
systems by polynomial methods. In the Polynomial Toolbox the function is called 
by the function stabint when computing stability interval. 

This function is new in the Polynomial Toolbox. 

The Jury matrix of the polynomial 
P = 1+z+2*z^2+3*z^3+4*z^4+5*z^5   

p =

1 + z + 2z^2 + 3z^3 + 4z^4 + 5z^5   
simply is 

J = jury(p)   

J =

5 4 3 1

0 5 3 2

0 -1 4 2

-1 -1 -2 2   

A version of reduced size is obtained by typing 

J4 = jury(p,4)   
J4 =

4 3 1

0 3 2

Compatibility 
Examples 
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-1 -1 2   
The macro uses standard MATLAB operations. 

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing 
Company. New York, 1994. 

The function displays no error messages. 

hurwitz Hurwitz matrix for a polynomial

stabint robust stability interval

 

Algorithm 
References 

Diagnostics 

See also 
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pdisp 

Display a polynomial or polynomial matrix without its name 

pdisp(M)

The command 

pdisp(M)

displays the polynomial matrix M without printing the name. 

Typing 
M = [s+1 s^2+s] 

M =

1 + s s + s^2 
displays the matrix M including its name. The name is suppressed by typing 

pdisp(M) 

     1 + s s + s^2

This command is new in the Polynomial Toolbox. 

The macro uses standard MATLAB commands. 

 

Purpose 
Syntax 
Description 

Example 

Compatibility 
Algorithm 
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pformat rootr, pformat rootc 

Format a polynomial or polynomial entry 

pformat rootr

pformat rootc

The Polynomial Toolbox can display polynomial matrices in various formats under 
the control of the command pformat. In addition to the formats available in Ver-
sion 2.0 (see the Manual for details) two more options were included in Version 2.5 
that allow to display polynomials in terms of their roots.  

By specifying the format rootr a polynomial with real coefficients is expressed as 
a product of first and second order factors. Every real root results in real factor of 
degree 1 while a pair of complex conjugate roots results in a real factor of degree 
2.  

The other new display format rootc returns a product of factors of degree 1 only. 
A pair of complex conjugate roots now results in a pair of first degree factors with 
complex coefficients. 

For polynomials with complex coefficients the two new formats display identical 
results with factors of degree 1 only.  

For polynomial matrices the formats apply to each of the entries. 

In Version 2.0 use of the options results in an error message. 
By way of example, create a simple polynomial 

P = (s-1)*(s+2)*(s+3*i)*(s-3*i);

Purpose 
Syntax 

Description 

Compatibility 
Examples 
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 pformat rootr, pformat rootc 

In the default display format symbs the polynomial is displayed as
p

p =

-18 + 9s + 7s^2 + s^3 + s^4   
Changing the display format to rootr results in 

pformat rootr

p   
p =

(s+2.0000)(s^2+9.0000)(s-1)   

The other new display format rootc returns a product of factors of degree 1 only. 
A pair of complex conjugate roots now results in a pair of first degree factors with 
complex coefficients: 

pformat rootc

p   
p =

(s+2.0000)(s+3.0000i)(s-3.0000i)(s-1)   

To view the effect on polynomial matrices consider 
pformat rootr 

[s^2+2*s+1 s+s^2]

ans =
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(s+1)(s+1) s(s+1) 
The routine uses standard MATLAB operations. 

pformat Control the display format of polynomials and polynomial matrices 

 

Algorithm 

See also 



 New Functions in Version 2.5 of the Polynomial Toolbox  

 pol2tex 

pol2tex 

Conversion of a polynomial object into LaTeX code 

Tex_str = pol2tex(A1,A2,…,AN)

Tex_str = pol2tex(A1,A2,…,AN,’File_name’)

The command 

Tex_str = pol2tex(A1,A2,…,AN)

converts the polynomial matrices or standard MATLAB matrices A1,A2,…,AN into a 
string Tex_str  in LaTeX code to be used in LaTeX source files. LaTeX is a well-
known document preparation system that is especially effective for text containing 
many mathematical formulas including matrices [1]. The output string comprises a 
sequence of LaTeX commands to create an array surrounded by bracket delimiters 
in display mathematical mode. The user is expected to copy this string to a LaTeX 
source file.  
Alternatively, the command 

Tex_str = pol2tex(A1,A2,…,AN,’File_name’) 

appends Tex_str to the existing file File_name.tex. If the file does not exist 
then the output string is saved in a newly created TEX file. This file, however, does 
not contain any LaTeX preamble and hence cannot be compiled by LaTeX as it is. 
Instead, it can be related to another TEX file using LaTeX command input or the 
include statement. 

Purpose 
Syntax 

Description 
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The macro allows any number of input arguments. The resulting format is given by 
the  currently active display format, which is controlled by the functions pformat 
and format. 

This function is new in the Polynomial Toolbox. 

The following examples illustrate how the command should be used. 

Example 1 
Consider a polynomial matrix C given by 

» C=[-8+s 1-6*s 6+6*s; 0 2 1; -1+4*s-3*s^2 2.1e-5 11-s] 
C =

-8 + s 1 - 6s 6 + 6s

0 2 1

-1 + 4s - 3s^2 2.1e-005 11 – s 
which should be included in a LaTeX based document. Calling pol2tex creates 
the string 

» pol2tex(C)

ans =

$$

C=

\left[ \begin{array}{lll}

-8+s & \;\;\;1-6s & \;\;\;6+6s \\

\;\;\;0 & \;\;\;2 & \;\;\;1 \\

Compatibility 
Examples 



 New Functions in Version 2.5 of the Polynomial Toolbox  

 pol2tex 

-1+4s-3s^{2} & \;\;\;2.1*10^{-5} & \;\;\;11-s

\end{array} \right]

$$ 
This string may be further edited if necessary. If the string is copied into an existing 
LaTeX file and compiled by LaTeX then one gets the fairly nice result 

2 5

8 1 6 6 6

0 2 1

1 4 3 2.1 10 11

s s s

C

s s s−

 − + − + 
 
 =  
 − + − × −  

 

Example 2  
As another example consider a constant matrix B  

B =

0.2200 -0.3333 0.1222 4.0000

-0.6364 8.0000 0.0927 0.4000

and change the format to rational

» format rat

» B

B =

11/50 -1/3 11/90 4

-7/11 8 29/313 2/5 
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Then  
» pol2tex(B)

ans =

$$

B=

\left[ \begin{array}{llll}

\;\;\; \frac{11}{50} & -\frac{1}{3} & \;\;\;
\frac{11}{90} & \;\;\; 4 \\ \\

-\frac{7}{11} & \;\;\; 8 & \;\;\; \frac{29}{313} &
\;\;\; \frac{2}{5}

\end{array} \right]

$$ 

LaTeX returns this as  

 
The macro uses standard MATLAB 5 operations. 

The macro displays error messages if  

 There are not enough input arguments. 
 The class of the input argument is inappropriate. 

Algorithm 
Diagnostics 
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Leslie Lamport, LaTeX: A Document Preparation System. Addison-Wesley, Read-
ing, Massachusetts, 1994. 

char Convert a polynomial object to a string

pformat Set the output format for a polynomial object 

 

References 

See also 
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psseig 

Polynomial approach to eigenstructure assignment for a state-space system 
L = psseig(F,G,P[,TOL])

Given a linear system 

= +x Fx Gu      
where F is an ×n n  constant matrix and G is an ×n m  constant matrix, and 

a set of polynomials { }= ≤…1 2( ), ( ), , ( ) ,rP p s p s p s r m , the command 

L = psseig(F,G,P) 

returns, if possible, a constant matrix L such that the closed-loop matrix of the con-
trolled system 

= −( )x F GL x  
has invariant polynomials …1 2( ), ( ), , ( )nq s q s q s , where  

+

=
=

=
= = =

1 1 2

2 2 3

1

( ) ( ) ( )
( ) ( ) ( ),

( ) ( ),
( ) ( ) 1

r r

r n

q s p s q s
q s p s q s

q s p s
q s q s

 

Such a matrix exists if and only if the fundamental degree inequality 
+ + ≥ + +1 2 1 2deg deg deg k kq q q c c c  

Purpose 
Syntax 
Description 
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holds for all = …1,2, ,k r , where ≥ ≥ ≥1 2 rc c c are the controllability indices of the 
pair (F,G). Moreover, equality must hold for k = r. If the input polynomials P do not 
satisfy these conditions then the macro issues an error message. 

A tolerance TOL may be specified as an additional input argument. Its default value 
is the global zeroing tolerance. 

This function is new in the Polynomial Toolbox. 

The dynamics of an inverted pendulum linearized about the equilibrium position are 
described by the equation 

= +x Fx Gu  
where 

   
   −   = =
   
   
−      

0 1 0 0 0
10.7800 0 0 0 0.2000

,
0 0 0 1 0

0.9800 0 0 0 0.2000

F G  

The desired closed-loop poles are selected as 
− ±
− ±
1
2 2

j
j
 

This yields the invariant polynomial 

= + + + +ψ 4 3 2
1( ) 6 18 24 16s s s s s  

Since = 1m , one has 

Compatibility 
Examples 
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= = =ψ ψ ψ2 3 4( ) ( ) ( ) 1.s s s  
We aim to find a feedback gain matrix L so that the state feedback law = −u Lx  
assigns these invariant polynomials to the closed loop system matrix −F GL . The 
corresponding code is as follows: 

F=[0,1,0,0;10.78,0,0,0;0,0,0,1;-0.98,0,0,0]   

F =

0 1.0000 0 0

10.7800 0 0 0

0 0 0 1.0000

-0.9800 0 0 0   
G=[0;-0.2000;0;0.2000]   

G =

0

-0.2000

0

0.2000   
P = s^4 + 6*s^3 + 18*s^2 + 24*s + 16;   

L=psseig(F,G,P)   

Constant polynomial matrix: 1-by-4

L =
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-1.5e+002 -42 -8.2 -12   
det(s*eye(4)-F+G*L)-P   

Zero polynomial matrix: 1-by-1, degree: -Inf

ans =

0   

The algorithm is fully described in reference [1]. It may be summarized as follows: 

1. A coprime matrix polynomial fraction description ( ), ( )r rA s B s  is computed 
for the system with the macro ss2rmf. 

2. The controllability indices (the column degrees of ( )rA s ) are sorted and the 
fundamental degree condition for invariant polynomials assignment is 
checked. 

3. A polynomial matrix ( )rC s  featuring the controllability indices and the de-
sired invariant polynomial factors is built. 

4. The Diophantine equation + =( ) ( ) ( ) ( ) ( )L r l r rX s A s Y s B s C s is solved for a 
constant solution ,L lX Y  with the macro xaybc. 

5. The constant feedback matrix −= 1
L lL X Y $ is constructed. 

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback 
Control.”  Proceedings of the IEEE International Symposium on Computed-Aided 
Control System Design, IEEE, pp. 380–385, Kohala Coast, Hawaii, August 1999.  

The macro produces error messages if 

• the input matrices have incompatible dimensions 

Algorithm 

References 

Diagnostics 
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• there is an incorrect number of invariant polynomials 

• some invariant polynomial is zero 

• the fundamental degree condition is not satisfied 

psslqr Polynomial approach to linear-quadratic regulator design for state-
space systems 

 

See also 
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psslqr 

Polynomial approach to linear-quadratic regulator design for state-space systems 
L = psslqr(F,G,H,J[,TOL])

Given a linear system 

= +x Fx Gu      
where F is an ×n n  constant matrix and G is an ×n m  constant matrix, and a regu-
lated variable 

= +z Hx Ju  
where H is a ×p n  constant matrix and J is a ×p m  constant matrix, the command 

L = psslqr(F, G, H, J)

returns a constant matrix L such that the control function = −u Lx minimizes the 
2L -norm of z for every initial state x(0). 

It is assumed that 

= =0,T TJ H J J I    
A tolerance TOL may be specified as an additional input argument. Its default value 
is the global zeroing tolerance. 
This function is new in the Polynomial Toolbox. 

The linearized model of the vertical-plane dynamics of an AIRC aircraft is de-
scribed by the equations 

Purpose 
Syntax 
Description 

Compatibility 
Examples 
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= +
= +

L

L

x Fx G v
y Hx J v

 

where 

 
 
 
 =
 
 
  

0 0 1.1320 0 -1
0 -0.0538 -0.1712 0 0.0705

,0 0 0 1 0
0 0.0485 0 -0.8556 -1.013
0 -0.2909 0 1.0532 -0.6859

F  

 
 =  
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

H  

We want to design a linear Gaussian filter for the covariance matrices given by 

 
 
 
 =
 
 
  
 
 =  
  

0 0 0 0 0 0
-0.1200 1 0 0 0 0

,0 0 0 0 0 0
4.4190 0 -1.6650 0 0 0
1.5750 0 -0.0732 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

L

L

G

J
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The corresponding code is as follows: 
F = [0,0,1.1320,0,-1;0,-0.0538,-.1712,0,0.0705;0,0,0,1,0;
0,0.0485,0,-0.8556,-1.0130;0,-0.2909,0,1.0532,-0.6859]   
F =

0 0 1.1320 0 -1.0000

0 -0.0538 -0.1712 0 0.0705

0 0 0 1.0000 0

0 0.0485 0 -0.8556 -1.0130

0 -0.2909 0 1.0532 -0.6859   
H = [1,0,0,0,0;0,1,0,0,0;0,0,1,0,0]   

H =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0   

GL = [0,0,0,0,0,0;-
0.12,1,0,0,0,0;0,0,0,0,0,0;4.4190,0,1.665,0,0,0;

1.575,0,-0.0732,0,0,0]  
GL =

0 0 0 0 0
0
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-0.1200 1.0000 0 0 0
0

0 0 0 0 0
0

4.4190 0 1.6650 0 0
0

1.5750 0 -0.0732 0 0
0   

JL = [0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1]   
JL =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1   

L = psslqr(F',H',GL',JL')   

Constant polynomial matrix: 3-by-5

L =

1 0.066 -0.21 -0.45 -0.81

0.066 0.94 -0.069 -0.053 -0.25

-0.21 -0.069 1.8 1.6 2.2   

The algorithm is fully described in reference [1]. It may be summarized as follows:  Algorithm 
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1. A coprime matrix polynomial fraction description ( ), ( )r rA s B s  is computed 
for the system with the macro ss2rmf. 

2. A polynomial matrix ( )rC s with 2L -optimal eigenstructure is computed with 
the spectral factorization macro spf.  

3. The Diophantine equation + =( ) ( ) ( ) ( ) ( )L r l r rX s A s Y s B s C s is solved for a 
constant solution ,L lX Y  with the macro xaybc. 

4. The constant feedback −= 1
L lL X Y is constructed. 

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback 
Control.” Proceedings of the IEEE International Symposium on Computed-Aided 
Control System Design, IEEE, pp. 380–385, Kohala Coast, Hawaii, August 1999.  

The macro produces error messages if  

• the input matrices have incompatible dimensions  

• the orthogonality condition on covariance matrices does not hold 

psseig Polynomial approach to eigenstructure assignment for state-space 
system 

 

Reference 

Diagnostics 

See also 
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sarea, sareaplot 

Robust stability area for polynomials with parametric uncertainties 

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new']) 

The command 

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

investigates the robust stability of a family of polynomials depending on m uncer-
tain parameters. By gridding the parameter space the family is split into a number 
of standard polynomials that are separately checked for stability. The m-
dimensional grid is defined by the vectors of parameter values …1, , mq q , and the 
results are stored in an m-dimensional array S structured accordingly. As expected, 
in S 1s stand for “stable” and 0s for “unstable.”  
For details on checking the stability of a single polynomial please read the descrip-
tion of macro isstable. The parameters …0, , np p  are given fixed polynomials 
that serve to define the uncertainty structure. Note that the input arguments repre-
senting both the parameters and the fixed polynomials must be written using their 
names (rather than values) in the function call.  
The uncertainty structure of the polynomial family is defined by the string variable 
ExpressionString. This string may contain any MATLAB-like expression com-

Purpose 
Syntax 

Description 
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posed of the parameter names (acting here as scalars) and of the names of the 
fixed polynomials.  

The procedure is better explained in the examples below. For three or more uncer-
tain parameters dense gridding may result in slow performance. Typing  

verbose yes

before the run activates an on-line info on the macro performance. 

Once the array S is available, it may be plotted by typing one of  
sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new']) 
for the case of one, two or three parameters, respectively. As before the parame-
ters 1 2 3, ,q q q  must be typed by names and not by values. The optional argument 
PlotType specifies the type of plot. It may be a surface plot (default or Plot-
Type='surf' ), a point plot (PlotType='points'), or a combination of the two 
(PlotType='both'). The surface plot is usually nicer but may miss some details, 
while the point plot is always complete. With the input string argument 'new' the 
plot is displayed in a new window. 
These functions are new in the Polynomial Toolbox. 

The following examples illustrate how the command should be used. 

 

Example 1  
Consider an uncertain polynomial 

Compatibility 
Examples 
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 sarea, sareaplot 

= + + +1 2 0 1 2 1 2 2( , , ) ( ) ( ) ( ) ( )p s q q p s q q p s q p s  

composed of three fixed polynomials 

= + + +

= − +

= +

2 3
0

2
1

4
2

4  8   5   

1   

   

p s s s

p s s

p s s

 

and  two real parameters ∈ −  1 6,12q  and ∈ −  2 5,15q . Suppose you want to 
check which values of 1q  and 2q  give rise to a stable 1 2( , , )p s q q . As there are two 
parameters and the uncertainty structure is quite complicated there is hardly any 
theoretical method known to help. Nevertheless, simple gridding can do the job in a 
reasonable time.  

To start, insert the data 
p0 = 4+8*s+5*s^2+s^3; p1=1-s+s^2; p2=s+s^4;

and choose an appropriate grid, such as 
q1 = -6:.1:12; q2=-5:.1:15;

Then construct the stability area array by typing 

S = sarea(q1,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2); 
and plot it with the help of 

sareaplot(q1,q2,S)   

What you get is the really nice picture displayed in Fig. 1. It shows which combina-
tions of parameter values yield a stable polynomial. 
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Fig. 6. Stability area of Example 1 

It is a must here to use names rather than values as the input arguments for both 
the parameters and the polynomials. Violation of this rule causes an error mes-
sage: 
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S=sarea(-
6:.1:12,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2);

??? Error using ==> sarea

The input argument of parameter vector or polynomial must be
a named variable.   

Example 2 
For the same three fixed polynomials, but a different uncertainty structure 

= + +λ λ λ λ λ3
1 2 0 1 2 1 2 1( , , ) ( ) ( ) ( )p s p s p s p s  

and parameters ∈ −  λ1 20,20  and ∈ −  λ2 10,10 , we may use the grid 

lambda1 = -20:.1:20; lambda2 = -10:.1:10;

and type 

expr = 'p0+lambda1*lambda2*p1+lambda2^3*p1';

S2 = sarea(lambda1,lambda2,expr,p0,p1,p2);

sareaplot(lambda1,lambda2,S2)

This results in the amusing picture shown in Fig. 7. 
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Fig. 7. Stability area for Example 2 

Example 3 
3-D examples are even nicer but, of course, more time consuming. Consider a 
three-parameter uncertain polynomial 

= + + + 2 2
1 2 3 0 1 1 3 3 1 1 2 2( , , , ) ( ) ( ) ( ) ( )p s q q q p s q q q q p s q q p s  
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with 

= + + +

= − + +

= + −

2 3
0

2
1

2
2

( ) 2 4   3   

 ( ) 1.7  0.13   0.29

( ) 1.2  1.2 0.038

p s s s s

p s s s

p s s s

 

and ∈ −  1 2 3, , 20, 20q q q . When inputting the data 

p0 = 2+4*s+3*s^2+s^3;

p1 = -1.7+0.13*s+0.29*s^2;

p2 = 1.2+1.2*s-0.038*s^2; 

q1 = -20:.5:20;q2=q1;q3=q1;

expr = 'p0+(q1+q1*q2)*q3*p1+(q1^2*q2^2)*p2';

the function called by

S3 = sarea(q1,q2,q3,expr,p0,p1,p2);

needs more than one hour on an average PC. The command  

sareaplot(q1,q2,q3,S3) 

results in Fig. 8. Such a 3-D plot can of course be zoomed or rotated by mouse in 
the standard MATLAB manner. 

Example 4 
We consider another 3-D example of uncertainty structure 
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Fig. 8. Stability area for Example 3 

= + − + +2
1 2 3 0 1 3 1 2 3 2( , , , ) ( ) ( )p s q q q p q q p q q p  

with 
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= + + +

= − −

= − +

2 3
0

2
1

2
2

( ) 2  4   3   

 ( ) 0.5  1.5   

( ) 0.02  2   

p s s s s

p s s s

p s s s

 

∈ − ∈ − ∈          1 2 37,7 , 40,2 , 0,40q q q  

We enter the data 

p0 = 2+4*s+3*s^2+s^3;

p1 = 0.5-1.5*s-s^2;

p2 = 0.02-2*s+s^2; 

expr = 'p0+(q1^2-q3)*p1+(q2+q3)*p2';

q1 = -7:.1:7; q2=-40:2; q3 = 0:0.5:40; 
and run the macros  

S4 = sarea(q1,q2,q3,expr,p0,p1,p2);

sareaplot(q1,q2,q3,S4)  
to obtain Fig. 9. 

The method is trivial: It directly runs a stability test step by step for each particular 
point of the grid. 

The macro sarea displays an error messages if  

• There are not enough input arguments 

Algorithm 

Diagnostics 
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Fig. 9. Stability area for Example 4 

• An argument corresponding to parameter or polynomial is not a named vari-
able 

• An invalid argument is encountered 
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• The expression string cannot be evaluated (in which case the error message 
is generated by lasterr and hence its text may vary according to the 
situation encountered). 

The macro sareaplot displays an error messages if  

• An invalid argument or option is encountered 

• There are more than three vectors representing uncertain parameters 

• Input arguments have inconsistent dimensions 

isstable Stability test for a polynomial matrix

vset, vsetplot Value set plot for a parametric polynomial family

 

See also 
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sim2lmf, sim2rmf 

LMF and RMF description of a SIMULINK model. 

[N,D] = sim2lmf('model')

[N,D] = sim2lmf('model',X0)

[N,D] = sim2lmf('model',X0,U0)

[N,D] = sim2rmf('model')

[N,D] = sim2rmf('model',X0)

[N,D] = sim2rmf('model',X0,U0)

The command  

[N,D] = sim2lmf('model') 
returns the LMF description for the linearization of the SIMULINK scheme called  
'model'. The initial conditions for inputs and internal states of related observer-
form realization by default are supposed to be zero but may be specified as addi-
tional input arguments: 

[N,D] = sim2lmf('model',X0) 

[N,D] = sim2lmf('model',X0,U0) 

Similarly, the commands 

[N,D] = sim2rmf('model') 

[N,D] = sim2rmf('model',X0) 

Purpose 
Syntax 

Description 
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[N,D] = sim2rmf('model',X0,U0)

compute the RMF description of the SIMULINK file 'model'. 

These functions are new in the Polynomial Toolbox. 

Consider the SIMULINK nonlinear model 'pendm' of an undamped simple pendu-
lum depicted in Fig. 10.:

 
Fig. 10. SIMULINK model of a simple undamped pendulum 

The sim2lmf command may be employed to obtain its linearization 

[N,D] = sim2lmf('pendm')

Constant polynomial matrix: 1-by-1

N =

Compatibility 
Examples 
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-1

D =

-9.8 - s^2

Without specifying any initial conditions we obtain the linearization around the 
lower stable position of the pendulum. The linear model of an inverted pendulum 
can be found using the same SIMULINK scheme by prescribing the initial angle 

=ϕ π0 : 
[N,D] = sim2lmf('pendm', [pi 0]) 

Constant polynomial matrix: 1-by-1

N =

-1

D =

9.8 - s^2

The command sim2rmf will of course give the same result in this SISO example. 

The standard SIMULINK command linmod is utilized along with the Polynomial 
Toolbox macros ss2lmf and ss2rmf. 

The macros sim2lmf and si2rmf display error messages if  

• The specified SIMULINK model does not exist 

• The length of the initial conditions vector does not match the model dimen-
sion 

• An invalid argument is encountered 

Algorithm 

Diagnostics 
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ss2lmf, ss2rmf State-space to LMF and RMF conversion 

polblock Polynomial Toolbox block for SIMULINK 

 

See also 
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spherplot 

Plot the value set of a polynomial family with a spherical uncertainty set and inde-
pendent uncertainty structure for a range of frequencies. 

spherplot(p0,omega,r,W) 

spherplot(p0,omega,r) 

spherplot(p0,omega)

This is a tool for testing robust stability using the Zero Exclusion Condition. A family 
of polynomials P = {p(⋅ ,q) : q∈ Q} is said to be spherical if p(⋅ ,q) has an independ-
ent uncertainty structure and the uncertainty set Q is an ellipsoid. The command

spherplot(p0,omega,r,w)

plots the value sets for the spherical polynomial family, where p0 is a nominal 
polynomial, omega is a vector of generalized frequencies, r is a robustness bound 
and weight is a vector of diagonal entries of the weighting matrix W. If the family 
has an independent uncertainty structure then the polynomial family can be ex-
pressed in the centered form 

=

= +∑0
0

( , ) ( )
n

i
i

i

p s p s q sq  

where the weighted Euclidian norm of the vector of the uncertain parameters is 
bounded by 

≤2,W rq  

Purpose 

Syntax 

Description 
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The command 

spherplot(p0,omega,r)

assumes that the  weighting matrix w is the unit matrix. The command

spherplot(p0,omega)  
assumes that the weighting matrix is the unit matrix and the robustness margin r
equals 1. The vector of uncertain parameters is then bounded by 

≤2 1q   

As with other tools based on the Zero Exclusion Condition it is necessary to make 
sure that there is at least one stable member of the polynomial family. Also re-
member that if you enter the weight parameter you only assign the vector of di-
agonal entries and not the whole matrix. 
This function is new in the Polynomial Toolbox. 

Example 1 
Consider the uncertain polynomial 

= + + + + + + +2 3
0 1 2 3( , ) (0.5 ) (1 ) (2 ) (4 )p s q q q s q s q s  

with the uncertainty bound ≤2, 1Wq  and the weighting matrix ( )= diag 2, 5, 3,1W , 
that is, 

+ + + ≤2 2 2 2
0 1 2 32q 5 3 1q q q  

Compatibility 
Examples 
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Use the graphical method of the Zero Exclusion Principle to test for the robust sta-
bility of the given uncertain polynomial. First we express the given polynomial in the 
centered form 

=

= + + + +∑
3

2 3

0

( , ) 0.5 6 4 i
i

i

p s s s s q sq  

with the uncertainty bound unchanged. Now type 

p0 = 0.5+s+6*s^2+4*s^3;

weight = [2,5,3,1];

r = 1; omega = 0:.01:1;   

isstable(p0)   
ans =

1   

The graphical representation of the value set for the given range of frequencies is 
generated by 

spherplot(p0,omega,r,weight) 
and shown in Fig. 11. It can be seen that the Zero Exclusion Condition is violated 
so we conclude that the given polynomial family is not robustly stable. 
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Fig. 11. Value set for Example 1 

Example 2 
Similarly to the previous example, test the following polynomial [1, pp.268] for ro-
bust stability 

( ) ( )= + + + + + + +2 3
0 1 2 3( , ) (2 ) 1.4 1.5 (1 )p s q q s q s q sq  

with the uncertain parameters subject to 
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≤2 0.011q  

We type 

p0 = 2+1.4*s+1.5*s^2+s^3; r = 0.011; omega = 0:0.005:1.4;
isstable(p0)   

ans =

1   

spherplot(p0,omega,r)   

This results in Fig. 12. In this case, the origin is excluded from the value set and we 
conclude that the polynomial family is robustly stable. 

The value set at each frequency is characterized [1, p. 270] by an ellipse centered 
at nominal ( )ω0p j  and with principal axis in the real direction having length 

 
 =
  
 
∑ ω2 2

0 2 i
i

i even

R r w  

and principal axis in the imaginary direction having length 

 
 =
  
 
∑ ω2 2

0 2 i
i

i odd

I r w  

The number r is a bound on the Euclidean norm of the vector of uncertain parame-
ters, ω  is a frequency, and W a weighting matrix given by 

Algorithm 
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Fig. 12. Value set for Example 2 

( )= …2 2 2
1 2, , , nW diag w w w . 

[1]  R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publish-
ing Company. New York, 1994. 

The macro returns error messages if the input arguments are incompatible. 

khplot Value set for an interval polynomial. 

References 

Diagnostics 

See also 
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ptopplot Value set for a polytope of polynomials. 

vsetplot Value set for polynomials with general uncertainty struc-
ture 
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tsyp 

Use the Tsypkin-Polyak function to determine the ∞ robustness margin for a con-
tinuous interval polynomial. 

R = tsyp(p0,w,epsilon)

R = tsyp(p0,w)

R = tsyp(p0)

R = tsyp(p0,[],epsilon)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,w,epsilon)

[R,W] = tsyp(p0,w)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,[],epsilon)

Given the nominal polynomial p0 the macro finds a robustness margin R such that 
the resulting interval polynomial 

( )
=

= + −∑ ε ε0
0

, ( ) [ , ]
n

i
R i i

i

p s q p s R s  

is robustly stable. The command 

R = tsyp(p0,w,epsilon)

Purpose 

Syntax 

Description 
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computes the robustness margin for an interval polynomial p0 at frequencies given 
by the vector w and with scale factors given by the vector epsilon. The command 

R = tsyp(p0,w)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors. The 
command 

R = tsyp(p0)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors and 
supplies its own vector of frequencies. The command 

R = tsyp(p0,[],epsilon)  

uses the supplied scale factors but computes its own frequency vector . The com-
mands 

[R,W] = tsyp(p0)

and

[R,W] = tsyp(p0,[],epsilon)

return the computed vector of frequencies as the second output for possible use 
with the function khplot. 

If no output is specified then the graphical output of Tsypkin-Polyak function is 
generated. Also shown is the robustness margin square, which is the largest pos-
sible square inscribed inside the plot of  the Tsypkin-Polyak function. Its size is the 
robustness margin R. 
This function is new in the Polynomial Toolbox. Compatibility 
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Example 1 
We consider the interval polynomial family Pr with the nominal polynomial given by  

= + + + + + +2 3 4 5 6( ) 676 1365 1019 420 104 15op s s s s s s s   
and scaling factors ε0 = 676, ε1 = 682.5, ε2 = 509.5, ε3 = 210, ε4 = 52, ε5 = 15,  
ε6 = 0. Find a robustness margin R such that the resulting interval polynomial is 
robustly stable. Typing 

p0 = pol([676 1365 1019 420 104 15 1],6);

w = 1:0.01:10;

epsilon = [676 682.5 509.5 210 52 15 0];   

tsyp(p0,w,epsilon)   
ans =

0.2344   

results in Fig. 13. We obtain the robustness margin R = 0.2344, which may be 
viewed as size of the largest possible square inscribed inside the plot of the Tsyp-
kin-Polyak function. 

Examples 
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Fig. 13. Output for Example 1 

Example 2 — Simple feedback 
The nominal pitch control system ([1], pp.101) is described in Fig. 14. Find the 
robustness margin for K = 4.  
We enter these commands: 
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0.25s+0.25*0.435

s  +3.456s  +3.457s  +0.719s+0.04164 3 2

Vehicle

4

K

PitchPitch command

 
Fig. 14. Pitch control system 

K = 4;

num = pol([0.25*0.435 0.25],1);

den = pol([.0416 .719 3.457 3.456 1],4);

p0 = den + K*num;   
[R,W] = tsyp(p0); R   

R =

0.2741   
pminus = p0 - R*p0;

pplus = p0 + R*p0;

khplot(pminus, pplus, W)   
The output is shown in Fig. 15.  
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Fig. 15. Output for Example 2 

Restricting the frequency range to lower frequencies (or zooming)  by typing 
khplot(pminus, pplus, W(1:round(length(W)/3)))  

leads to Fig. 16. Thus we have found the robustness margin R and now it is easy to 
find the uncertainty bounds on the coefficients of the polynomial: 

Qbounds = [pminus{:}' pplus{:}']

Qbounds =

0.3460 0.6072

1.2478 2.1902
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2.5093 4.4047

2.5086 4.4034

0.7259 1.2741

If the coefficients remain within these intervals then the polynomial is guaranteed to 
be stable. 
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Fig. 16. Zoomed output for Example 2 

The algorithm is based on the Tsypkin-Polyak function GTP(ω) described in [1], 
pp.97. It finds a robust margin R such that the condition  ( ) ∞

>ωTPG R  is satis-
Algorithm 
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fied for all frequencies (recall that ( ) ( ){ }∞ = ∈max Re , Im ,z s z z C  and no de-
gree drop occurs. It uses the standard MATLAB minimization routine fminbnd.  

R. Barmish, New Tools for Robustness of Linear Systems. Macmillan Publishing 
Company. New York, 1994. 

Since the quality of the result of the minimization routine depends considerably on 
the initial guess, the proper choice of the frequency range is important. The pro-
gram automatically validates its result by the testing stability of the four Kharitonov 
polynomials. If these are not robustly stable then the following error message ap-
pears: 

Warning: Resulting margin does not guarantee robust

stability of the interval polynomial. Run again with

extended frequency range and/or denser gridding. 

Also use the graphical output to assess the acceptability of the result. 

khplot Value set for an interval polynomial. 

kharit Return the Kharitonov polynomials 

References 

Diagnostics 

See also 
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vset, vsetplot 

Value set of a parametric polynomial  

V =
vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega][,qType])

vsetplot(V[,PlotType][,'new'])

This is another tool for robust stability testing with the help of the Zero Exclusion 
Condition. The command 

V =
vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega[,qType]])  

computes the values at the generalized frequencies given by the vector ω  of a 
family of polynomials depending on m independent parameters. The parameter 
values that are selected are given by the vectors …1, , mq q  and the results are 
stored in a matrix V  of complex numbers. The values at the various frequencies 
are organized column wise.   

The arguments …0, , np p  are given fixed polynomials that define the family. The 
uncertainty structure is described by the string variable ExpressionString.
This string is a MATLAB-syntax expression for 

+ +0 1 0 1( ,..., ) ( ,..., )m n m na q q p a q q p that is composed of the parameter names and 
the names of the fixed polynomials. The “coefficients” 1( ,..., )i ma q q are given by any 
MATLAB-syntax expression consisting of the parameter names acting here as scalar 
symbols.  

Purpose 
Syntax 

Description 
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Note that the input arguments representing both the parameters and the fixed 
polynomials must already exist in the current workspace and, moreover, must be 
written using their names (rather than values) in the function call. The use of the 
command is further explained in the examples below.  
Once the value matrix V is available one can plot it by typing   

vsetplot(V[,PlotType][,'new'])

The plot consists of the sets ω( )iV  of values for the generalized frequencies. De-
pending on the optional argument PlotType they can be composed of lines (de-
fault or PlotType = 'lines') or points  (PlotType = 'points'). With the 
input string argument 'new' the plot is displayed in a new window. 
By default or with the string argument  qType = 'r' the grid consists of combina-
tions of entries in the vectors  …1, , mq q . When qType='e' the grid consists  of l  
points defined by their coordinates in m-dimensional space; all the …1, , mq q must 
be of the same length l..  

This pair of macros tests robust stability of the polynomial family by the Zero Exclu-
sion Condition [1]. If the family contains a stable member and if the value set for all 
generalized frequencies on the stability region boundary excludes the point 0 then 
the family is concluded to be robustly stable (stable for all parameters ranging 
given intervals). For more details, see [1] or another robust control textbook.  

To perform the robust stability test we first find a stable member in the family. Typi-
cally, the nominal value is stable or we proceed by trial and error. Once a stable 
member is found we substitute into the family several generalized frequencies from 
the stability boundary and plot the corresponding value sets. It is important to use 

Scope 
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frequencies leading to value sets close to the point 0. If none of the sets contains 
or touches the critical point then robust stability is verified. 

To plot value sets for special uncertainty structures such as polytopic or even inter-
val uncertainty more efficient macros are available, in particular ptopplot and 
khplot, respectively. 

These functions are new in the Polynomial Toolbox 

To understand the use of command, go through the following simple examples. 

Example 1: Continuous-time case  
Consider an uncertain polynomial 

= + + +1 2 0 1 1 2 2 1 2 12( , , ) ( ) ( ) ( ) ( )p s q q p s q p s q p s q q p s  
composed of four fixed polynomials 

= + + + +

= + + +

= + + +

= + +

2 3 4
0

2 3
1

2 3
2

2
12

1.853  3.164  2.871  2.56

3.773  4.841  2.06

1.985 1.561  1.561

4.032  1.06  

p s s s s

p s s s

p s s s

p s s

 

and check its robust stability for ∈   1 0,1q  and ∈   2 0, 3q . To this end, first enter 
the data 

p0 = pol([1.853 3.164 2.871 2.56 1],4);

p1 = pol([3.773 4.841 2.06 1],3);

p2 = pol([1.985 1.561 1.561 1],3);

Compatibility 
Examples 
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p12 = pol([4.032 1.06 1],2);  
describe the uncertainty structure

expr = 'p0+q1*p1+q2*p2+q1*q2*p12'

and define a reasonable grid for the parameter intervals
q1 = 0:1/50:1; q2=0:3/50:3;

As the polynomials are of continuous-time nature it is necessary to plot value sets 
for several critical frequencies on the imaginary axis. Hence, choose ωi  = 1.3, 1.4, 
1.6, 1.6  and type

V = vset(q1,q2,expr,p0,p1,p2,p12,j*[1.3:.1:1.6]);

vsetplot(V,'points')

to obtain the plot of Fig. 17. Note that the value sets are not convex. This typically 
happens whenever the uncertainty structure is multilinear or more complex.  

As one of the value sets (that for =ω 1.4i ) seems to include the critical point 0 we 
zoom the plot in to that of Fig. 18 to see more details. It is evident that ∈0 (1.4)V  
and, hence, the family is not robustly stable. 

Example 2: Discrete-time case   
Now consider a family of discrete-time polynomials with quite complicated uncer-
tainty 

− − − − −= + − +1 1 1 1 2 1( , , , ) ( ) sin( ) ( ) cos( ) ( ) ( )p z k l m e z k f z k kg z l h z
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Fig. 17. Value set for Example 1 

where 
− − − −

−

− −

− −

= − + −

=

=

=

1 1 1 1

1

1 1

1 2

( ) ( 1.5)( 2)( 2)

( ) 1

( )

( )  

e z z z z

f z

g z z

h z z
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and  ∈ −  , , 1,1k l m . Here the data to be entered are 
e = (zi-1.5)*(zi+2)*(zi-2);f=1; g=zi; h=zi^2;

uncrty = 'e+sin(k)*f-cos(m)*k*g+(l^2)*h'; 

and, say, 
k = -1:.1:1; l = k; m = k; 

 
Fig. 18. Zoomed plot 
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Before using the Zero Exclusion Condition to test robust stability we must check 
that the family contains at least one stable member. Indeed, the nominal polyno-
mial − −=1 1( ,0,0,0) ( )p z e z  is stable: 

isstable(e)   

ans =

1   

Now we evaluate and plot value sets at 40 generalized frequencies evenly spread 
around unit circle: 

V = vset(k,l,m,uncrty,e,f,g,h,exp(j*(0:2*pi/40:2*pi)));

vsetplot(V)

and obtain the picture of Fig. 19. As all the sets are far enough to the right of the 
critical point robust stability is verified. 

Example 3: Incorrect calls 
The user must not forget about calling the function with named variable arguments. 

Even if the parameters  
q0 = 1:5; 

already exist in the workspace it must be represented by its name. The following 
call is definitely incorrect 
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Fig. 19. Value set for Example 2 

vset(1:5,'q0*p',p,j) 
??? Error using ==> vset

Undefined function or variable 'q0'. 

The method is quite easy. The overall picture is composed of the value sets for the 
generalized frequencies. Each set is obtained by substituting the frequencies into 

Algorithm 
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the uncertainty formula for all parameter values achieved by gridding the parameter 
set.   

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing 
Company. New York, 1994. 

The macro vset displays an error message if  
 The set of generalized frequencies is not a non-empty vector 

 There are not enough input arguments 

 The expression string cannot be correctly evaluated. Here the error message is 
returned by lasterr and hence its text may vary according to the inconsis-
tency encountered 

The macro vsetplot displays an error message if  

• The value set matrix is not a non-empty 2-dimensional double. 

• An inappropriate input string argument is used. 

khplot Value set for an interval polynomial. 

ptopplot Value set for a polytope of polynomials. 

 

References 

Diagnostics 

See also 
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