Control of a batch process

Introduction

Design targets

Many photographic films and papers are manufactured in a batch-like mode. In this
mode batches of sensitized material are made up and then coated onto a base. To
guarantee that the photographic properties are kept within limits, strips of product
are regularly sent to testing for assessment. If the product is drifting off aim then it
1s possible to add dye or change the laydown to move the product back on target.

However, there frequently are more outputs than “control knobs” to use for
adjustment, and the inputs frequently affect many outputs simultaneously. Testing
delay, more outputs than inputs, the desire for a first-order return rather than a step
return to target for some products, and stochastic disturbances make this an
interesting control problem.

Below is the transfer function plus disturbance model for a process like the one
described above.
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Here z7! is the delay operator and the v;(f) are disturbance signals.

The three outputs y;, y9 and ys successively are the deviations from aim of
photographic speed, contrast, and upper density point. The two inputs u; and u, are
dye and laydown changes from preset starting values, and the delay of three accounts
for the zero order hold and testing delay.

The three disturbance models are first order integrated moving average, first order
integrated autoregressive, and first order integrated moving average, respectively.

We look for a feedback controller that
¢ reduces the effect of random disturbances, and

e eliminates the effect of long term drifts in the disturbances



Theory

Process and
disturbance
models

A useful control design approach is the Internal Model Control (IMC) approach
discussed in MacGregor and Harris (1987). shows the arrangement.

The control law H for this problem follows by the minimization of a mean square
error criterion of the form

E(e” ))Que®) + Vu” ())QVu(t))

E denotes the expectation, e(t) is the deviation of the output y(¢) from its set point,
and Vu(t) = u(t) —u(t — 1) is the incremental control action. €; and €, are weighting
matrices.
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Fig. 1. Internal Model Control

The control is computed by a polynomial algorithm. To this end, the plant-
disturbance model is rendered as

¥(®) = G (z"Hu) + D)

with D(¢) the effect of the disturbances on the output y. The process model G,, is
described by the right polynomial matrix fraction

GnhH=LEHRI (™

with L and R polynomial matrices in the delay operator z~!. The disturbance model
is taken as

D(t) = 0" Ho L z"HVu(r)

with v a column vector of white noise inputs. The quantities & and ® are polynomial
matrices in the delay operator, with @ diagonal, and



veé=(1-2z1H91
Algorithm The first step of the algorithm is to find the approximate inverse model

Gl = REHI Y

for the plant. The polynomial matrix 1"(2_1) follows by the spectral factorization
r'EHrE™H =LEHLE )+ Qv

The superscript * denotes the adjoint, that is,
'@ H=r'()

The spectral factor F(z_l) needs to have all its roots outside the unit circle.

The controller H may now be expressed as
HE =G, e HFE™, FeH=TEHo e

where the polynomial matrix T, together with the polynomial matrix P, is the
solution of the two-sided equation

L'EHQoE =T HTEh+2P HviaE™

Application to To apply the algorithm to the batch control problem we need to obtain the process

the batch and disturbance models in the required form. Inspection of
process
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Furthermore, writing



Computation

1-0627" |
0 621 0 0
1-z
0 1 - 0
(1-05z"H(1-2z"H
_ -1
0 0 1 055?
L 1-2z~
1-062z71 0 0 1 0 0]
= 0 1 0 0 1-05z1 0] 1-zH7!
0 0 1-055z71{0 0 1
=0 Ho (v
we see that
1-06z71 0 0 1 0 0
6zhH=| o 1 0 1-zYH"1 @EYH=|0 1-0521 0| d=1
0 0 1-055z"" 0 0 1

The weighting matrices, finally, are selected as
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The first step of the computation is to define the input data. Thus, the first few lines
of the script denpB. mare

% denoB

% Script for the denp "Control of a batch process”

% Defi ne the data

L

[-77*z~-3 0.33*z~-3; 0 0.03*z~-3; 0 0.1*z"-3];

R = eye(2,2);

theta = diag([1-0.6%*z*-1 1 1-0.55%*z7-1]);



Spectral
factorization

Solution of the
two-sided
equation

Phi = diag([1 1-0.5%*z*-1 1]);
d = 1;

QL = diag([0.01 8 2.25]);
Nabl a = (1-z"-1);

The first computational step is to determine the polynomial matrix I' by spectral
factorization:

% Spectral factorization
Ganma = spf (L' *Ql*L);
The result is
Ganma
Constant polynomial nmatrix: 2-by-2
Gamma =
7.7 -0.033
0. 00074 0.17
The next computational step is to solve the two-sided matrix equation
L' hHe0E™h) =T HTE ™Y + 2P ¢ HviaoE™) 1)

for the matrices T and P. For this we use the routine axybc. This solves the two-
sided polynomial matrix equation

AX+YB=C

To turn nto a polynomial matrix equation we need to multiply it by a suitable
power n of z7! so that 2 "L (2™ and 2 "T*(z™!) both are polynomial and also
U (2_1) =z " 1p* (2_1) is a polynomial matrix.

Choosing n = 3 we have
% Sol uti on of the two-sided equation

n = 3;



A = zM-n*Gma' ;

B

Nabl ard* Phi ;
C

L' *Ql*t het a;
[T, U = axybc(A B, O;

T turns out to be 2x3 matrix of degree 1, as predicted by the theory (MacGregor and
Harris, 1987):

T =
-0.04 -0.00025 + 0.00012z"-1 -5. 6e-005
- 3. 8e- 006 2.6 - 1.2z"-1 0.59
The controller  The controller transfer matrix is
HGE =Gl (e HFE™ = ReHI @ HTE o @
=9z ()
where
9z = REHI @ HTE™
is polynomial because I is a constant matrix. We compute the controller as
% Conpute the controller H = phi/theta
phi = R Ganme*T,;
The result is
phi =
- 0. 0052 0.065 - 0.03z7-1 0. 015
-1. 3e-016 15 - 7.1z*-1 3.4

Response to We study the effect of disturbances D(¢) at the plant output such that

disturbances
¥(®) = G (2" Hu®) + D)



Disturbance
impulse and
step responses

The closed-loop response to the disturbances D(¢) follows from the sensitivity matrix
S:

y1(® Dy (t)
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y3() D5 (2)

It is not difficult to find from the block diagram of that if the plant model
exactly matches the plant then

S hH=1-G,HHEY)
It follows that
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Thus we add the lines
% Conpute the sensitivity matrix S = psi/theta
psi = theta-L/ Garma* T,

The Control Toolbox and even more SIMULINK are very well equipped to compute, plot
and manipulate time responses. We stay within the confines of the Polynomial
Toolbox, however, and use long polynomial division to compute the impulse and step
responses to disturbances (see the demo "Computing the covariance function of an

ARMA process".)
% Conput e and pl ot the disturbance inpul se response matrix r
% Apply long division to psi/theta
n = 10;

[g,r] = longrdiv(psi,theta,n);



% Pl ot the data
figure; clf
k = length(r);
for i = 1:k
for j = 1:k
subpl ot (k, k, (i-1)*k+j)
plot (0:n, r{:}(i,j))
grid on; axis([0 n -1.5 1.5])
end
end

MATLAB produces the plot of for the impulse response matrix. The step
responses may be computed similarly and are shown in

% Conpute and pl ot the disturbance step response matrix s
% Apply long division to (psi/theta)*1/(1-z"-1)
n = 10;
[g,s] = longrdiv(psi,theta*(1-z"-1),n);
% Pl ot
figure; clf
k = length(s);
for i = 1:k
for j = 1.k
subpl ot (k, k, (i-1)*k+)
plot(0:n,s{:}(i,j))
grid on; axis([0 n -1.5 1.5])



Fig. 3. Disturbance step response matrix



Assessment

end
end
Inspection of the step response matrix shows this:

¢ The (1,2) and (1,3) entries of the step response matrix are identical to zero. This
means that the first output is insensitive to the second and third components of
the disturbances.

¢ Likewise, the (2,1) and (3,1) entries are zero. This means that the second and
third outputs are insensitive to the first component of the disturbance.

* All nonzero entries show a dead time of three time steps. This is a consequence of
the dead time of the process.

¢ The step response in the (1,1) entry eventually goes to zero. This means that
constant disturbances are suppressed in this channel.

¢ The step responses in the remaining zero entries do not approach zero, which
means that constant disturbances in the second and third channel are not
suppressed. The reason for this is that there are three components to the
disturbance but only two control inputs so that a full degree of freedom 1is lacking.
The resulting loss in performance is divided between the second and third
channels. The balance of this division may be shifted by adjusting the entries of
the weighting matrix ).



