Applications in behavioral system theory

Introduction

Example

Behavioral system theory (Polderman and Willems, 1998) is a very general approach
to system theory. It defines a system as a relation between the signals that constitute
the environment of the system. A distinction is made between latent (or internal) and
manifest (or external) signals but not necessarily between input and output signals.

Polynomial matrices play an important role in the behavioral theory of linear
systems. The purpose of this demo is to show that the Polynomial Toolbox provides
many useful routines for dealing with problems and questions in behavioral linear
system theory.
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Fig. 1. RCL network

By way of illustration we consider the simple electrical network of The signals
of interest are the currents ip, i7, and ic through the resistor, inductor and capacitor,
respectively, the voltages vg, vy, and ve across these same network elements, the
current i that flows into the network, and the voltage v across the network. The
relations between the signals are given by

¢ the element equations

resistor: vg = Rip

inductor: vy, = Lﬂ
dt
. . dve
capacitor: i = C—=
p C dt

¢ the interconnection equations (Kirchhoff's laws)
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i=ip, Igp=1ip, I =IC
UV=UgRr +Ur, +U¢
All these equations can be combined in the form
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where the polynomial matrix @ and the vector-valued signal z are given by
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The representation is called a kernel representation of the system, because it
defines the system as all signals that are in the kernel (or null space) of the operator

Q(d /dt).

The equation haracterizes what is known as the full behavior of the system,
because it includes all latent and manifest signals. Such a characterization is
typically obtained when setting up the system equations from first principles. For the
electrical network the latent variables ¢ and the manifest variables w could be
chosen as
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If the latent variables are eliminated from the behavior then the manifest behavior is
obtained.



Computation of We consider how to compute the manifest behavior from the full behavior.

the manifest Partitioning the matrix @ as @ = [Ql Q2] we have for the full behavior

behavior Q1)+ @y (s)w=0

where s represents the differentiation operator. Let the rows of the polynomial matrix
N be a minimal polynomial basis for the left null space of @;. Then the manifest
behavior has the kernel representation

d
R(—w=0
(dt)w
where

R(s) = N(s)& ()

Example In the example, choose the numerical values
1
R=3, L=1 C= 5

We input the polynomial matrix @ as

R=3, L=1;, C=1/2;

Q=[ R O 0 -1 0 0 0 0
0 s*L O 0 -1 0 0 0
0 0 1 0 0-s*C O 0
1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
-1 0 0 0 0 1 0

0
0 0 -1 -1 -1 0 1];
The polynomial matrices €; and @y follow as

QA =Q:,1:6); @ =Q:,7:8);
From this, the matrices N and R may be computed as

N=null(Q); R=NQQ



Controllability

Image
representation

2 + 3s + s"2 -s

Hence, the manifest behavior is described by the differential equation

d d?_. d
2432 + 2 i) -=—v@®) =0
@+3 4 i) = v

A behavioral system in kernel representation R(d /dt)w =0 is controllable iff the
polynomial matrix R is left prime (Polderman and Willems, 1998). For the example
we can easily verify controllability by typing

i sprine(R)
ans =
1

A well-known fact from behavioral theory is that given a controllable kernel
representation

d
R(—w=0
( p t)
there always exists an equivalent image representation of the form
d
w=M(—)
( 7 t)

with ¢ a latent variable. Inspection shows that the columns of M(s) need to be a

minimal basis for the right null space of R(s). Thus, for the example we may compute
M as

M

nul | (R)

M

S
2 + 3s + sN2

Hence, the image representation of the system is



State
representation

Example

d

i=—
dt

d d?
=@2+3—+—7)/
v=( a0 dt2)

Note that physically the latent variable ¢ corresponds to Cve, which happens to be
the charge of the capacitor.

Another fact from behavioral system theory is that the manifest behavior of any
finite-dimensional linear system may be represented in the equivalent state space
form

x=Ax+ Bw
0=Cx+ Dw

The latent variable x is the state of the system. This representation is by no means
unique, and may be constructed in the following way from the kernel representation
R(d/dt)w=0.

First, assume that R is row-reduced. If it is not then it may be unimodularly
transformed to be row-reduced without changing the behavior.

Let S be a square, nonsingular, row-reduced matrix whose row degrees equal the row
degrees of R, and chosen such that SR is left coprime. Obviously the behavior
R(d /dt)yw =0 1is equivalent to the behavior defined by

d d
— = R —_— =
S(dt)z (dt)w’ z=0

Let

x= Ax+ Bw
z=Cx+ Dw

be a minimal realization of the left coprime matrix fraction S™'R. Then clearly

x= Ax+ Bw
0=Cx+ Dw

1s a state realization of the behavior.

We further pursue the example. Given the row-reduced polynomial matrix



R =
2 + 3s + s"2 -S
we choose
S = s"N2;

A minimal realization of S™'R is obtained as

[A/B,C,D = Inf2ss(R S)
A =

0 1

0 0
B =

3. 0000 -1. 0000

2. 0000 0

1 0

Construction of So far no distinction has been made among the manifest variable between “input”

10 system and “output” variables, which the obvious connotation of “causes” for inputs and
“effects” for outputs. Indeed, in the electrical network example there is no a priori
reason which of the two manifest variables v and i is the input and which is the
output because the circuit could be connected to a voltage or a to a current source.

If no compelling reason exists to designate certain manifest variables as inputs and
other variables as outputs then possible partitionings of the manifest variables into
sets of input variables and output variables may be determined on the basis of the
(plausible) requirement that the outputs are causally affected by the inputs.



Example

To make this more concrete, suppose that we have a kernel representation

R(d /dt)w =0 such that R has full row rank with rank equal to r. Select r
components of w as outputs and permute the components of w and the corresponding
columns of R such that the selected outputs are the first r components of w. We write
the resulting kernel representation as

[Ri -Ry ]{ﬂ =0

with y the output and u the input. Then the proposed selection of outputs and inputs
is deemed acceptable if R} 1R2 1S proper.

Consider the state representation

x= Ax+ Bw
0=Cx+ Dw

where C and D have r rows. Then in this context a causal IO representation may be
constructed by selecting r columns of D so that the resulting square submatrix is
nonsingular. By designating the corresponding entries of w as outputs and the
remaining entries as inputs the equation 0= Cx + Dw may be rearranged as

y = cx+ du. Substitution of y into the equation x = Ax+ Bw results in a state
representation of the IO system.

We found that the electrical network has the state representation

ol e 2

A B
O=[1%x+[i}%)]{J

Inspection of the matrix D shows that the only available option is to take the current
i as the output and, hence, the voltage as the input. Substitution of the resulting
output

i=[-1 O]«

into the first equation yields the corresponding state differential equation. Not
wanting to make any mistakes we invoke MATLAB:



c =[-120]; B1L =08B(:,1); B2 = B(:,2);
a = A+Bl*c, b = B2
a =

- 3. 0000 1. 0000

-2. 0000 0
b =

-1. 0000

0

Thus, we have the 10 representation

. -3 1 -1
x= x+ v
-2 0 0
| — —
a b
i=[-1 O]«

—
C

This selection of input and output corresponds to connecting the network to a voltage
source. Connecting it to a current source does not lead to a causal IO system because
the admittance

2+3s+ 5>

S

of the network is nonproper.



