Computing the covariance function of an ARMA process

Introduction
The problem of computing the covariance function for a given multivariable ARMA process is often encountered in estimation, filtering, stochastic control and communications.

Consider the ARMA process

$$A(z)y(t) = B(z)e(t), \quad t \in \mathbb{Z}$$

where z is the shift operator defined by $zy(t) = y(t + 1)$. A and B are square polynomial matrices in z with possibly complex-valued coefficients. The random sequence e is white noise so that

$$Ee(t)e^H(t) = \begin{cases}
I & \text{for } t = s \\
0 & \text{for } t \neq s
\end{cases}$$

The superscript H indicates the complex conjugate transpose. A is assumed to be monic (that is, its leading coefficient matrix is nonsingular) with all its roots strictly inside the unit circle. Under these assumptions the ARMA process y is well-defined and asymptotically stationary.

The covariance matrix function that is to be found is defined by

$$r(\tau) = \lim_{t \to \infty} E y(t + \tau) y^H(t)$$

Algorithm
The covariance matrix function may be computed by inverse z-transformation of the spectral density matrix

$$\Phi(z) = A^{-1}(z)C(z)C^H(1/z)\left(A^{-1}(1/z)\right)^H$$

The computation of the covariance function (Söderström, Jezek and Kucera, 1997) follows by partial fraction expansion of the spectral density in the form

$$\Phi(z) = A^{-1}(z)X(z) + X^H(1/z)\left(A^{-1}(1/z)\right)^H$$

This partial fraction expansion is equivalent to solving the symmetric two-sided polynomial matrix equation

$$C(z)C^H(1/z) = X(z)A^H(1/z) + A(z)X^H(1/z)$$
for the polynomial matrix X. Once X is available we may expand

$$A^{-1}(z)X(z) = \sum_{\tau=0}^{m} \hat{r}(\tau)z^{-\tau}$$

by long polynomial division. Inspection of the right-hand side shows that

$$r(\tau) = \begin{cases}
\hat{r}(\tau) & \text{for } \tau > 0 \\
\hat{r}(0) + \hat{r}^H(0) & \text{for } \tau = 0 \\
\hat{r}^H(-\tau) & \text{for } \tau < 0
\end{cases}$$

Example 1: A scalar process

To illustrate the procedure first consider a scalar ARMA process y given by

$$A(z) = 1 - 2.4z + 1.43z^2$$

$$C(z) = 1$$

We develop a Polynomial Toolbox function called `covf`, which takes the polynomial matrices A and C as input arguments and has the desired covariance function r as output. Because a macro with the same name exists in the System Identification Toolbox we need to *overload* this function. Practically this means that the macro is placed in the `pol` subdirectory of the main Polynomial Toolbox directory. When MATLAB detects that `covf` is called with one or more polynomial objects as input argument then it uses the version of `covf` that is located in this subdirectory.

The macro covf

The first lines of the macro are

```matlab
% covf
%
% This function computes the covariance function
% of the discrete-time ARMA process y defined by
% % A(z)y(t) = C(z)e(t)
% %
% % with e standard white noise.
```
function \(r = \text{covf}(A, C, n) \)

The third input argument \(n \) is the number of time shifts over which the covariance function is required.

Normally at this point each Polynomial Toolbox function performs a number of correctness checks on the input arguments. We dispense with these for the purpose of this demo.

To solve the symmetric polynomial equation

\[
X(z)A^H(1/z) + A(z)X^H(1/z) = C(z)C^H(1/z)
\]

we use the Toolbox function xaa xb. Only one line is needed:

```
% Solve the two-sided polynomial matrix equation
X = xaa xb(A, C*C');
```

For the example at hand the intermediate solution at this point is

\[
X = -20 + 8.3z + 28z^2
\]

From the given polynomial \(A \) and the computed polynomial \(X \) the desired covariance function is recovered by "long division" of \(X^{-1}A \). For this purpose the macro longldiv is available. Given the square polynomial matrix \(D \) and the polynomial matrix \(N \) this function finds the first \(n + d + 1 \) terms of the Laurent series expansion

\[
D^{-1}(z)N(z) = Q_nz^n + Q_{n-1}z^{n-1} + \cdots + Q_1z + R_0 + R_1z^{-1} + R_2z^{-2} + \cdots + R_dz^{-1} + \cdots
\]

If the fraction \(D^{-1}N \) is proper then the macro returns the first \(d + 1 \) terms (with \(d \) an input parameter) of the expansion

\[
D^{-1}(z)N(z) = R_0 + R_1z^{-1} + R_2z^{-2} + \cdots + R_dz^{-1} + \cdots
\]

This is exactly what we need. Thus, the appropriate command is

```
% Apply long division to X\A
[Q,R] = longldiv(X,A,n);
```

\(R \) is returned as a polynomial matrix in the variable \(z^{-1} \) of degree \(n \). For convenience we also return the desired covariance function as a polynomial in this variable:
% Construct the covariance function
r = R;
r(0) = r(0)+r(0)';

The macro is now complete and we may apply it to the example:

\[r = \text{covf}(1-2.4z+1.43z^2,1,40); \]

The resulting covariance function \(r \) may be plotted using standard MATLAB commands:

\begin{verbatim}
plot(0:40,r(:,1),'o')
title('Covariance function - Example 1')
xlabel('tau'), ylabel('r'), grid on
\end{verbatim}

[Fig. 1] shows the plot of the covariance function.

![Covariance function - Example 1](image)

Fig. 1. Covariance function of the ARMA process of Example 1
As another example consider the computation of the covariance matrix function of the two-variable ARMA process \(y \) defined by

\[
A(z) = \begin{bmatrix} 1-2z & 0 \\ 6 & 1-2.5z \end{bmatrix}, \quad C(z) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

As our newly created function is ready for multivariable processes we may use it as it is after defining the data:

\[
A = [1-2*z 0; 6 1-2.5*z]; \quad C = \text{eye}(2,2);
\]

\(r = \text{covf}(A,C,10); \)

The output \(r \) now is a \(2 \times 2 \) polynomial matrix of degree 10. The coefficients \(r(i, i), i = 1, 2, \ldots, 10 \), constitute the desired covariance function. They may be plotted in a single frame by the following sequence of standard MATLAB commands that we include at the end of the macro `covf`:

\[
\text{figure; clf}
\]
\[
k = \text{length}(C);
\]
\[
\text{for } i = 1:k
\]
\[
\quad \text{for } j = 1:k
\]
\[
\quad \quad \text{subplot}(k,k,(i-1)*k+j)
\]
\[
\quad \quad \text{plot}(0:n,r{:}(i,j), 'o')
\]
\[
\quad \quad \text{grid on; xlabel('tau')}
\]
\[
\quad \end{for}
\]
\[
\end{for}
\]

\(\text{The resulting plot is shown in Fig. 2. The subplot in position } (i, j) \text{ shows the scalar covariance function } r_{ij}(\tau) = \lim_{\tau \to \infty} \text{cov}[y_i(t + \tau), y_j(t)]. \)
Fig. 2. Covariance function of the ARMA process of Example 2