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The Polynomial Toolbox for MATLAB 

1 Introduction 
This document highlights the new features of Version 2.5 of the Polynomial Toolbox for MATLAB 

How to use this document 

If you are upgrading to Version 2.5 of the 
Polynomial Toolbox from … 

Then read ... 

Polynomial Toolbox Version 2.0 All sections of the present document. 

Polynomial Toolbox Version 1.4 or1.5 for 
Matlab 4 

The complete documentation of Version 2 
and then all sections of the present document. 
It may also be necessary to update your MAT-
LAB knowledge. 

References to other documents 

Throughout this document there are references to the Manual and the Commands volumes of Ver-
sion 2.0 of the Polynomial Toolbox. 

New installation instructions 

The Polynomial Toolbox 2.5 may be installed in the following simple steps. 

• Delete any existing Polynomial Toolbox Version 2.0 (the existing folder   
...\polynomial and its contents). 

• Copy the whole folder  \polynomial including all its contents   from the Polynomial 
Toolbox CD-ROM Version 2.5 to your PC, preferably next to other MATLAB toolboxes that 
all are placed in the folder  ...\MATLABR12\toolbox or 
...\MATLABR11\toolbox or  ...\MATLAB\toolbox. 

• Add the folder ...\polynomial to your MATLAB path (for instance by using   the 
MATLAB Path Browser). 

• If you use version 2 of SIMULINK then replace the file  ...\polynomial\ pol-
block.mdl, residing in the main Polynomial Toolbox directory, by the file 
...\polynomial\simulink2\polblock.mdl. The current version of SIMULINK 
can be checked by typing “ver simulink” in the MATLAB main window.  

Windows plat-
forms 
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• You are recommended to add a new line to your startup.m file containing the command 
PINIT. With this modification the Polynomial Toolbox is automatically initialized at the 
beginning of every MATLAB session. If you do not do this then you will have to type 
PINIT manually each time you start a Polynomial Toolbox session. 

• When using the Polynomial Toolbox for the first time after installation you will be asked to 
provide your personal license number. 

• The standard configuration of the Polynomial Toolbox contains an Acrobat Reader placed 
in the folder ...\polynomial\Pdf-files\Acrobat 4.0, which guarantees easy 
use of the on-line documentation by the POLDESK command. This configuration requires 
no action during the installation and it is recommended for most users. For more details on 
using the on-line documentation see the section Documentation. 

• Delete any existing Polynomial Toolbox Version 2.0 (the existing directory  
.../polynomial and its contents). 

• Copy the whole directory /polynomial including all its contents from the Polynomial Tool-
box CD-ROM Version 2.5 to your system, preferably next to the other MATLAB toolboxes 
that all are placed in  the directory .../MATLABR12/ toolbox or  
.../MATLABR11/toolbox or .../MATLAB/toolbox. 

• Add the directory .../polynomial to your MATLAB path. 

• If you use version 2 of SIMULINK then replace the file ...polynomial/ pol-
block.mdl, residing in the main Polynomial Toolbox directory, by the file 
.../polynomial/simulink2/polblock.mdl. The current version of SIMULINK 
may be checked by typing “ver simulink” in the MATLAB main window.  

• You are recommended to add a new line to your startup.m file containing the command 
PINIT. With this modification the Polynomial Toolbox is automatically initialized at the 
beginning of every MATLAB session. If you do not do this then you will have to type 
PINIT manually each time you start a new Polynomial Toolbox session. 

• When using the Polynomial Toolbox for the first time after installation you will be asked to 
provide your personal license number. 

• To access the Polynomial Toolbox on-line documentation by the command POLDESK your 
UNIX system is supposed to run Acrobat Reader by the usual command “acroread.” If 
this is not the case then you must create such an alias, or ask your system administrator for 
help. For more details on using the on-line documentation see the section Documentation.  

 

 

UNIX platforms 
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Upgrading instructions 

Older versions of the Polynomial Toolbox 2.x may be upgraded to Version 2.5 by executing the 
following steps. 

 

• Make sure that your current folder ...\polynomial and all its contents are not read-
only. You can check this by right-clicking a few files and viewing the properties sheet. To 
disable the read-only attribute of all files and folders in the Polynomial Toolbox right-click 
the top level Polynomial Toolbox folder ...\ polynomial and open the properties 
sheet. Uncheck the box “Read-only” and click on OK. In some versions of Windows you 
can now select the option “Apply changes to this folder, subfolders and files” and again 
click on OK. If this option is not available then repeat the procedure for all subfolders of 
...\ polynomial. Alternatively, you may open a DOS-box, change to the folder ...\
polynomial, and type the command “attrib -r *.* /s /d” to disable the read-
only attribute of all files and folders in the Polynomial Toolbox. 

• Copy the entire contents of the folder upgrade\polynomial including all subfolders 
from the Polynomial Toolbox CD-ROM Version 2.5 to your PC over the contents of the ex-
isting folder ...\polynomial. 

• If you still use version 2 of SIMULINK then replace the file ...\polynomial\ pol-
block.mdl, residing in the main Polynomial Toolbox directory, with the file  
...\polynomial\simulink2\polblock.mdl. You may check the current version 
of SIMULINK by typing “ver simulink” in the MATLAB main window.  

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder 
...\polynomial including its contents) and then install Version 2.5 following the “New in-
stallation instructions.” In this case you will be asked to provide your personal license number. 

• Make sure that your current directory  .../polynomial and all its contents are write 
enabled. Check this by moving to the directory .../polynomial, typing “ll” and in-
specting the w flag. If the w flag is not present in the user access persissions for all files 
then type “chmod u+w *” to set it. Repeat this for all sub-directories. 

• Copy the entire contents of the directory upgrade/polynomial including all subfold-
ers from the Polynomial Toolbox CD-ROM Version 2.5 to your computer over the contents 
of the existing directory .../polynomial. 

• If you still use version 2 of SIMULINK then replace the file .../polynomial/ pol-
block.mdl, residing in the main Polynomial Toolbox directory, with the file  
.../polynomial/simulink2/polblock.mdl. You may check the current version 
of SIMULINK by typing "ver simulink" in the MATLAB main window. 

Windows plat-
forms 

UNIX platforms 
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Alternatively, you may delete the old Polynomial Toolbox version (the whole folder 
...\polynomial including its contents) and then install Version 2.5 following the “New in-
stallation instructions.” In this case you will be asked to provide your personal license number. 

Documentation 

Three document volumes are provided with the Polynomial Toolbox: Manual, Commands, and 
Version 2.5 Upgrade Information. The printed Manual and Version 2.5 Upgrade Information vol-
umes are delivered with the Polynomial Toolbox CD-ROM. The printed Commands volume may 
be purchased separately (see the PolyX website or contact info@polyx.cz).  

Ready-to-print electronic versions of the Manual, Commands and Version 2.5 Upgrade Informa-
tion are also available. They may be found in ...\polynomial\Pdf-files in the files 
manual.pdf, commands.pdf and upgradeinfo25.pdf. The files are all readable by 
Acrobat Reader. Users are welcome to print these files for their own use but should not distribute 
them any further. For more copyright details see the License Agreement.  

On-line electronic versions of the Manual, Commands and Version 2.5 Upgrade Information are 
also provided. They are located in the folder ...\polynomial\Pdf-files in the files
OnLineManual.pdf, OnLineCommands.pdf and OnLineUpgradeInfo25.pdf. They 
are normally accessed by the Polynomial Toolbox command POLDESK but users are free to create 
other arrangements. 

On Windows Platforms, POLDESK by default uses Acrobat Reader located in the Polynomial 
Toolbox folder ...\polynomial\Pdf-files\Acrobat 4.0 . This configuration is gen-
erally recommended. If an experienced user wishes to employ a different version of Acrobat 
Reader located elsewhere then the entire folder ...\polynomial\Pdf-files\Acrobat
4.0 may simply be deleted. During the next execution POLDESK will look for Acrobat Reader in 
the standard location C:\Program Files\ Adobe\Acrobat 4.0\Reader\
AcroRd32.exe or will ask the user to provide a valid path name. 

On UNIX Platforms, POLDESK by default calls the command “acroread” that typically runs 
Acrobat Reader on a UNIX system. If this alias is not recognized then the user or a system admin-
istrator may create such an alias. 

Alternatively, the user of each system may type POLDESK RECOVER. This opens a dialogue 
window where the user can type in a valid pathname. 
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A note for SIMULINK 3 users on Windows platforms 

Under the MS Windows operating systems the way the “simulink” command is processed dif-
fers slightly in versions 2 and 3 or 4 of SIMULINK. The instructions in the Polynomial Toolbox 
2.0 Manual (pages 83–84) refer to version 2 of SIMULINK. If you use SIMULINK 3 or 4 under 
Windows then please proceed in one of the two following ways: 

1. Type  

 » simulink

to open the Simulink Library browser. The Polynomial Toolbox 2.0 Simulink library now 
is directly accessible within the browser along with the other Simulink libraries.  

2. Type  

 » simulink3

to open the Simulink Library window. Follow the instructions in the Polynomial Toolbox 
2.0 Manual, pages 83–84. 

 For further information consult the SIMULINK manual (Using Simulink, Version 3). 

Compatibility with MATLAB version 6 

The Polynomial Toolbox 2.5 works well with the MATLAB Release 12 products MATLAB 6 and 
Simulink 4. In fact, some functions are up to two times faster with MATLAB 6 than before. 

MATLAB 6 users will see the Polynomial Toolbox icon in their MATLAB Launch Pad window 
among the other MATLAB toolboxes they may have. The Polynomial Toolbox help functions, 
demos, Polynomial Matrix Editor and PolyX web site may be directly accessed from the Launch 
Pad window. 

Clicking a POL object icon in the MATLAB Workspace window does not open the object in an 
array editor. We hope to fix this shortcoming in the future but the related MATLAB code is not 
open for us currently. Instead, type PME in the command window and open the object in the Poly-
nomial Matrix Editor. 
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2 What is New in Version 2.5? 
Overview 

Version 2.5 features the following enhancements. 

• Bug fixes to Version 2.0 

• Improved algorithms and other internal changes 

• New display formats 

• Several new functions 

• Miscellaneous updates and modifications 

Bug fixes 

Version 2.5 includes a number of bug fixes. In particular, it includes all patches that were made 
available on the PolyX website since the release of Version 2.0. 

Improved algorithms and other internal changes 

Several algorithms have been improved in Version 2.5 to reflect recent research achievements. In 
particular, the linear polynomial matrix equation solvers axb, axbyc, xab, xaybc, and axxa2b 
perform faster, in particular for large matrices. These modifications have no impact on the way the 
functions are used and hence require no attention on the part of the user. In particular, no changes 
were made in the numbers of input and output arguments and their order. 

New display formats 

Version 2.5 includes several additional display formats for polynomial matrices.  

pformat rootr Format a polynomial or polynomial entry as a product of real first- 
and second-order factors 

pformat rootc Format a polynomial or polynomial entry as a product of first-order 
factors 

pdisp Display a polynomial matrix without printing the name     
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New functions 

Several new functions were added in Version 2.5. 

The new routine pol2tex is a great help for authors who use LaTeX. 

pol2tex Formats a polynomial matrix for use in a LaTeX document 

 

Version 2.5 offers two new solutions for the standard 2H  problem under quite general conditions. 

h2 Polynomial solution of the standard 2H  optimization problem 

dssh2 Descriptor solution of the standard 2H  optimization problem 

Version 2.5 adds the following new macros to the already impressive list of routines for testing the 
stability of interval polynomials 

jury Create the Jury matrix corresponding to a polynomial 

sarea, sareaplot Robust stability area for polynomials with parametric uncertainties 

spherplot Plot the value set ellipses for a spherical polynomial family 

tsyp Use the Tsypkin-Polyak function to determine the ∞A  robustness 
margin for a continuous interval polynomial 

vset,vsetplot Value set of parametric polynomial. A tool for robust stability testing 
via Zero Exclusion Condition 

Version 2.5 includes two polynomial methods for state space systems 

psseig Polynomial approach to eigenstructure assignment for state-space sys-
tem 

psslqr Polynomial approach to linear-quadratic regulator design for state-space 
system 

Two brand new routines allow the automatic conversion of SIMULINK block diagrams to LMF and 
RMF descriptions. 

sim2lmf Simulink-to-LMF description of a dynamic system 

sim2rmf Simulink-to-RMF description of a dynamic system 

LaTeX format-
ting of polyno-
mial matrices 

H2 optimization 

Interval poly-
nomials 

State space 
systems 

Simulink rou-
tines 



  9 

The Polynomial Toolbox for MATLAB 

Version 2.5 includes two upgrades of existing numerical utilities and a new numerical function. 

clements1 Conversion to Clements standard form (upgrade of clements) 

dssreg “Regularizes” a standard descriptor plant (upgrade) 

gare Solution of the generalized algebraic Riccati equation 

The function complete is a new addition to the collection of polynomial matrix functions. 

complete Complete a non-square polynomial matrix to a square unimodular ma-
trix 

Three new text based demos have been included in Version 2.5. They are self-explanatory and no 
documentation is available. Simply type the name of the demo in the command line. 

poldemo This demo reviews several of the functions and operations defined in 
the Polynomial Toolbox for polynomials and polynomial matrices 

poldemodebe Design of a dead-beat compensator 

poldemodet Comparison between numerical and symbolic computation of determi-
nant of a polynomial matrix. This demo requires the Symbolic Toolbox 
to be installed 

In addition two “shows” have been prepared that run in a graphical interface. Enter the name of the 
show in the command line to view the show. No additional documentation is available. 

poltutorshow Introduction into the basic operations with polynomials and polynomial 
matrices. This is a graphical version of the text based demo poldemo 

polrobustshow Overview of parametric robust control tools 

 

Numerical rou-
tines 

Polynomial ma-
trix functions 

Demos and 
shows 
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Miscellaneous updates and modifications 

This section lists modifications in various macros that were made after Version 2.0 was released. 
The changes leave the macros fully compatible with Version 2.0 and are all reflected in the on-line 
help. 

There are a number of improvements in axxab. 

• By default, the macro axxab now returns a solution with triangular leading coefficient ma-
trix (in the continuous-time case) or triangular constant coefficient matrix (in the discrete-
time case). The option 'tri' is no longer effective but still valid for compatibility reasons. 

• By default, the macro now uses the sparse linear system solver and performs no preliminary 
rank check. 

• The new option ′chk′ turns the preliminary rank check on and activates MATLAB’s built-
in standard (non-sparse) linear system solver. 

The macro cgivens1 differs from the implementation in Version 2.5 by the introduction of an 
optional tolerance tol. The default value of tol is 0. In the form 

[c,s] = cgivens1(x,y,tol)

the routine sets x and y equal to zero if their magnitude is less than tol. 

Unimodular polynomial matrices and constant non-polynomial matrices are now considered to be 
stable, and not unstable as in Version 2.0. 

The macro prand has two new options. 

• The option ′mon′ generates a monic polynomial matrix. 

• The option ′pos′ generates a polynomial matrix with the required number of zeros. In 
particular, the call  
   P = prand(degP,I,'pos'[,zeros_vector])     
generates a square I-by-I  polynomial matrix P but now degP means the required num-
ber of zeros, including multiplicities. Some zeros can be fixed a priori by the optional 
vector zeros_vector.  Complex conjugate complex parts are added if necessary. 

The function call  

reverse(P)

with the single input argument P, reverses the order of the coefficients. Thus, if 

0 1( ) n
nP s P P s P s= + + +"  

then  

Q = reverse(P) 

axxab 

cgivens1 

isstable 

prand 

reverse 
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returns 

1 0( ) n
n nQ s P P s P s−= + + +"  

Zeroing management has been changed in this macro. Now, no zeroing is performed by default. 
However, an optional tolerance tol may be passed to the macro in one of the forms 

P = root2pol(Z,K,tol)

or 

P = root2pol(Z,K,tol,var)

In this case all coefficients of the resulting polynomial that are less than tol times  the largest 
coefficient are neglected. Note that if the tolerance argument is included both the input argument Z 
and K needs to be present. 

The on-line help has been modified to emphasize that the routine does not work with complex 
polynomials. 

 

root2pol 

stabint 
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3 New Functions in Version 2.5 of the 
Polynomial Toolbox 

This chapter documents the new functions of Version 2.5 of the Polynomial Toolbox. 
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clements1 

Transformation of a para-Hermitian pencil to Clements form 

[C,u,p] = clements1(P)

[C,u,p] = clements1(P,q)

[C,u,p] = clements1(P,q,tol) 

The command  

[C,u,p] = clements1(P,q,tol)

transforms the para-Hermitian nonsingular real pencil P(s) = sE + A to Clements standard form C 
according to 

C(s) = u(sE + A)uT = se + a 
The matrix u is orthogonal. The pencil C has the form 

 +
 

= + = + 
 
− + − + +  

1 1

2 3 3

1 1 3 3 4 4

0 0
( ) 0

T T T T

se a

C s se a a se a

se a se a se a

 

The pencil +1 1se a  has size ×p p  and its finite roots have nonnegative real parts. The matrix 2a  
is diagonal with the diagonal entries in order of increasing value. 

If the optional input argument q is not present then 2a  has the largest possible size. If q is present 
and the largest possible size of 2a  is greater than ×q q  then – if possible – the size of 2a  is re-
duced to ×q q . Setting q = Inf has the same effect as omitting the second input argument. 

The optional input parameter tol defines a relative tolerance with default value 1e-10. It is 
used to test whether eigenvalues of the pencil are zero, have zero imaginary part, or are infinite, 
and for other tests. For compatibility with an earlier version of the macro a tolerance parameter of 
the form [tol1 tol2] is also accepted but only the first entry is used. 

This version is backward compatible with the earlier version (named clement in Version 2.0) 
but also handles singular pencils and pencils with roots on the imaginary axis. Because of certain 
modifications in the algorithm clements and clements1 generally do not produce the same 
output for the same input. 

We consider the computation of the Clements form of the para-Hermitian pencil 

Purpose 
Syntax 

Description 

Compatibility 

Example 
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− 
 − − =
 − −
 
  

100 0.01 0
0.01 0.01 0 1

( )
0 1 0

0 1 0 0

s

P s
s

 

We first input this matrix as 

P = [100 -0.01 s 0; -0.01 -0.01 0 1;-s 0 -1 0;0 1 0 0];   

and next compute its Clements form: 

[C,u,p] = clements(P);   

We have 

p, C = pzer(C)  

p =

1

C =

0 0 0 -10 + s

0 -1 0 -3.5e-005 - 0.0007s

0 0 1 -0.014 + 0.00071s

-10 - s -3.5e-005 + 0.0007s -0.014 - 0.00071s 99

We see that 

− 
+ = − =  

 
1 1 2

1 0
10,

0 1
se a s a  

Next we attempt to reduce 2a  to the smallest possible size: 

[C,u,p] = clements(P,0);   

p, C = pzer(C)   

p =

2

Polynomial matrix in s: 4-by-4, degree: 1

C =

0 0 0 -10 + s

0 0 1 -0.01 + 5e-006s
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0 1 -0.01 -0.0099 + 0.001s

-10 - s -0.01 - 5e-006s -0.0099 - 0.001s 99  

We now have 

−

− 
+ =  

× −  
1 1 6

0 10

1 5 10 0.01

s
se a

s
 

while 2a  is the empty matrix. 

The algorithm is described in Clements (1993) and in slightly more detail in Kwakernaak (1998). 
The extension to roots on the imaginary axis is described in Kwakernaak (2000). 

Clements, D. J. (1993), “Rational spectral factorization using state-space methods.” Systems & 
Control Letters, vol. 20, pp. 335–343. 

Kwakernaak, H. (1998), “Frequency domain solution of the ∞H  problem for descriptor systems.” 
In Y. Yamamoto and S. Hara, Eds.,  Learning, Control and Hybrid Systems, Lecture Notes in 
Control and Information Sciences, vol. 241, Springer, London, etc. 

H. Kwakernaak (2000), “A Descriptor Algorithm for the Spectral Factorization of Polynomial 
Matrices.” Third IFAC Symposium on Robust Control System Design ROCOND 2000, Prague, 
June 21–23, 2000. 

The macro displays error messages in the following situations:  

• The input matrix is not a square pencil 

• The input matrix is not real 

• The input pencil is not para-Hermitian 

• An eigenvalue on the imaginary axis cannot be deflated 

A warning message is issued if the relative residue exceeds 1e-6. The “relative residue” is the 
norm of the juxtaposition of the (1,1) and (1,2) blocks of C divided by the norm of P.  

dsshinf ∞H -suboptimal compensators for descriptor systems 

gare Solution of generalized algebraic Riccati equations 

 

 

Algorithm 

References 

Diagnostics 

See also 
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complete 

Complete a nonsquare polynomial matrix to a unimodular matrix 

[U,V] = complete(Q,[tol])   

If Q is a tall polynomial matrix then the command 

[U,V] = complete(Q)

produces a unimodular matrix U of the form U = [Q R]. If Q is wide then the unimodular matrix U 
has the form U = [Q; R]. V is the inverse of U. 

If Q does not have full rank or is not prime then no unimodular matrix U exists and an error mes-
sage follows. Also if Q is square non-unimodular an error is reported. 

The optional input argument tol is the tolerance used for the row or column reduction of Q that is 
part of the algorithm. 

This is a new function in the Polynomial Toolbox. 

A tall polynomial matrix Q with column degrees 2 and 1 and dimensions ×3 2  is generated by the 
command 

Q = prand([2 1],3,2)   

Q =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s   

Q is completed to a unimodular matrix U by typing 

[U,V] = complete(Q);

U   

U =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s 0.2 + 0.00074s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s 0.4 + 0.016s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s 1 + 0.036s   

It may be verified that U is unimodular and that V is its inverse by successively typing 

det(U)   

Constant polynomial matrix: 1-by-1

Purpose 
Syntax 
Description 

Compatibility 
Example 



18 New Functions in Version 2.5 of the Polynomial Toolbox  
  

   

ans =

-0.73   

U*V   

Constant polynomial matrix: 3-by-3

ans =

1 0 0

0 1 0

0 0 1   

Let Q be a full rank ×n k  polynomial matrix, with >n k . We wish to find an × −( )n n k  poly-
nomial matrix R such that   Q R  is unimodular. Let U be a unimodular matrix which reduces Q 
to the extended row-reduced form 

 
=  
 0
oQUQ  

If the ×k k  matrix oQ  is a constant matrix then it is nonsingular and the desired unimodular 
completion exists. Otherwise, the completion does not exist. The row reduction algorithm also 
yields the inverse −= 1V U  of U. Redefine 

−   
= =   
    

1 00: , :
00
oo QQU U V V

II
 

and partition =   1 2V V V . Then 

   
= =   
   

2
0

,
0
I

UQ UV
I

 

Hence, the desired completion is 

  2Q V  

and its inverse is U. If Q is not tall but wide then the algorithm is applied to the transpose of Q. 

The macro complete issues error messages if 

� The input matrix is square non-unimodular 

� The input matrix cannot be completed to a unimodular matrix because it is not prime 

� The input matrix does not have full rank 

colred, rowred Reduction to column or row reduced form 

Algorithm 

Diagnostics 

See also 
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dssh2 

Descriptor solution of the H2 problem 

[Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

The command 

    [Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

solves the H2 optimization problem for the standard plant 
−= − +1( ) ( )G s C sE A B D   

with nmeas measured outputs and ncon control inputs. The optimal compensator is given by 
−= − +1( ) ( )k k k k kK s C sE A B D  

The optional parameter tol is a tolerance with default value 1e-10. 

Conditions on the input data: If D is partitioned as 

 
=  
 

11 12

21 22

D D
D

D D
 

where 12D  has ncon columns and 21D  has nmeas rows, then 12D  needs to have full column 
rank and 21D  full row rank, and 22D  should be the zero matrix. Use the command dssreg with 
the option 'D22' to “regularize” the system if these conditions are not met. 

This function is new in the Polynomial Toolbox. 

2H  design problem 

Consider the block diagram of Fig. 1.  The plant is a MIMO system with transfer matrix 

 
 + =
 
 + 

2
1 1

2
( )

1
0

2

ssP s

s

 

The controlled output is 

  
=  
 

11

12

z
z

z
 

Purpose 
Syntax 
Description 

Compatibility 
Example 
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Fig. 1. Design problem 

 

The measured output  

 
=  
 

1

2

y
y

y
 

is corrupted by colored measurement noise generated by the two shaping filters with transfer func-
tions 

+
1

1 /10s
    and    

+
1

1 / 20s
 

The second component of the disturbance 

 
=  
 

1

2

v
v

v
 

is passed through a shaping filter with transfer function 1/ s  to ensure integrating action on both 
input channels. The input 
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 
=  
 

1

2

u
u

u
 

is weighted with dynamic weighting functions with transfer functions +1(1 )c rs  (to ensure suffi-
cient high-frequency roll-off of the compensator) and 2c s  (both for high-frequency roll-off and to 
allow integral control at the second input channel). 

The generalized plant that defines the 2H  problem is given by 

 
 + + 
 
 + + 
 + 

= =   
   

 
 

+ + + 
 
 

+ + +  

2 2

11 12 1

21 22 2

2 2

1 1 1 1
0 0

( 2) 2
1 1

0 0 0 0
( 2) 2

( ) ( ) 0 0 0 0 (1 ) 0
( )

( ) ( ) 0 0 0 0 0
1 1 1 1 1

0
( 2) 1 /10 2

1 1 1
0 0 0

( 2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s

 

The transfer matrix may be entered in rational format, converted to a left polynomial matrix frac-
tion by the command rat2lmf and after this converted to descriptor representation by the com-
mand lmf2dss: 

c1 = 1; c2 = 1; r = 5;

Num = [ 1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1 ];

Den = [ s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2
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1 s*(s+2) 1 1+s/20 1 s+2 ];

[N,D] = rat2lmf(Num,Den);

[a,b,c,d,e] = lmf2dss(N,D)

a =

Columns 1 through 7

0 1.0000 -1.7638 0 0 0 0

0 0 0 0 0 0 0

0 0 -2.0000 1.0000 0 0 0

0 0 0 0 0 0 0

0 0 0 0 -10.0000 0 0

0 0 -0.0000 0 0 -20.0000 0

0 0 0 0 0 0 1.0000

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1.0000 0 0

0 1.0000 0

0 0 1.0000

b =

0 0 0 0 0 0.3333

0.3333 0.3333 0 0 0.3333 0
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0 0 0 0 0 0.3780

0 0.3780 0 0 0 0

0 0 -0.5754 0 0 0

0 0 0 -0.5769 0 0

0 0 0 0 0 0

0 0 0 0 5.0000 0

0 0 0 0 0 0

0 0 0 0 0 1.0000

c =

Columns 1 through 7

3.0000 0 0 0 0 0 0

0 0 2.6458 0 0 0 0

0 0 0 0 0 0 -1.0000

0 0 0 0 0 0 0

-3.0000 0 0 0 17.3781 0 0

0 0 -2.6458 0 0 34.6699 0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

0 -1.0000 0

0 0 0

0 0 0

d =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0
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0 0 0 0 0 0

e =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 

The descriptor representation does not satisfy the regularity assumptions, This is corrected with the 
help of the command 

[a1,b1,c1,d1,e1] = dssreg(a,b,c,d,e,2,2,'D22');

Following this the solution of the 2H  problem follows by typing 

[yd,xd] = dss2rmf(ak,bk,ck,dk,ek);

We suppress the rather copious output. The compensator may be converted to rational form by the 
commands 

[Y,X] = dss2rmf(ak,bk,ck,dk,ek);
[NumK,DenK] = rmf2rat(Y,X);  

The compensator is given by 

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058

4.4 13 17 14 5.6 (4.4 13 17 14 5.6 )
( )

0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s

s s s s s s s s s s s
K s

s s s s s s s s

s s s s s

 
 
 
 

+ 
 + + + + + 

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6 )

s s

s s s s s s

 
The solution is obtained by a mixed state space and polynomial matrix solution  (Kwakernaak, 
2000). 

 

Algorithm 
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Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust Control De-
sign,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 21–23 June 2000, Prague, 
Czech Republic. 

The macro dssh2 issues error messages if 

� The input data have inconsistent dimensions 

� The matrix D does not satisfy the regularity conditions 

� The plant has unstable fixed poles 

� The generalized plant has marginally stable fixed poles that cannot be cancelled 

� The closed-loop transfer matrix cannot be made strictly proper 

dssreg Regularization of a descriptor system 

h2 Polynomial solution of the standard 2H  problem 

gare Solution of Generalized Algebraic Riccati Equations 

dsshinf ∞H  suboptimal compensator for descriptor systems 

mixeds Solution of a SISO ∞H  mixed sensitivity problem 

plqg Polynomial solution of a MIMO LQG problem 

splqg Polynomial solution of a SISO LQG problem 

 

 

Reference 

Diagnostics 

See also 
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dssreg 

“Regularization” of a standard descriptor plant 

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon[,tol][,option1][,option2]) 

The commands 

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon,tol) 

transform the generalized plant 

 
= +  

 
   

= +   
   

� w
Ex Ax B

u

z w
Cx D

y u

  

where the dimension of y is nmeas and the dimension of u is ncon, into an equivalent general-
ized plant  

 
= +  

 
   

= +   
   

� w
ex ax b

u

z w
cx d

y u

  

with 

d = [d11 d12

d21 d22] 
such that d12 has full column rank and d21 has full row rank. “Equivalent” means that the two 
plants have the same transfer matrices. 

The optional tolerance parameter tol is used in the various rank tests. It has the default value 
1e-12. 

Two options may be included. The option 'D11' modifies the representation so that the term with 
d11 is absent. The option 'D22' removes the term with d22. 

In verbose mode the routine displays a relative error based on the largest of the differences of the 
frequency response matrices of the transformed and the original plant at the frequencies 1, 2, ..., 
10. 

Purpose 
Syntax 

Description 
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This version of dssreg is backward compatible with the version of Version 2.0 of the Toolbox. 
The only difference is that the options 'D11' and D22' have been added. 

In the Example section of the manual page for the Polynomial Toolbox command dsshinf the 
descriptor representation of a generalized plant is derived. When considering the subsystem  

= +2 (1 )z c rs u  
two pseudo state variables are defined as = = �3 4,x u x u , which leads to the descriptor equa-
tions 

=
= − +

�3 4

30

x x

x u
 

The output equation is rendered as  

= + = +2 4(1 )z c rs u crx cu  
The output equation, however, equally well could be chosen as 

= + = +2 3 4(1 )z c rs u cx crx  
This brings the generalized plant in the form 

       
                = +                  

−                

�
�
�
�

���	��
 ���	��
 ��	�


1 1

2 2

3 3

4 4

1 0 0 0 0 1 0 0 2 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1

x x

x x w
x x u
x x

E A B

 

 
              = +               − −        ����	���
 ��	�


1
1

2
2

3

4

1 0 0 0 1 0
0 0 0 0
1 0 0 0 1 0

x
z

x w
z c cr

x u
y

x
DC

 

For this plant we have 

 
= = − 
 

12 21
0

, 1
0

D D  

so that 12D  does not have full rank. We apply dssreg to this plant for c = 0.1, r = 0.1. 

c = 0.1; r = 0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

Compatibility 

Examples 
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A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 c c*r; -1 0 0 0];

D = [1 0; 0 0; -1 0];

ncon = 1; nmeas = 1;   

We now apply dssreg. 

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)   

a =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 -1 0

b =

1.4142 0

1.0000 1.0000

0 1.0000

0 1.0000

c =

1.0000 0 0 0

0 0 0.1000 0.0100

-1.0000 0 0 0

d =

1.0000 0

0 0.0100

-1.0000 0

e =

1 0 0 0

0 1 0 0

0 0 1 0
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0 0 0 0   

We now have 

 
= = − 
 

12 21
0

, 1
1

D D  

so that the transformed plant is “regular.”  

As a second example we consider the standard plant 

 
= +     

 
   

=   
   

� 1 1

1
1

w
x x

u

z
x

y

 

for which neither 12D  nor 21D  has full rank. We obtain the following result. 

E = 1; A = 1; B = [1 1]; C = [1; 1]; D = [0 0;0 0];

nmeas = 1; ncon = 1;

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)   

a =

1 0 0

0 1 0

0 0 1

b =

1 1

0 1

1 0

c =

1 1 0

1 0 1

d =

0 1

1 0

e =
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1 0 0

0 0 0

0 0 0   

Instead of a state representation of dimension 1 we now have a 3-dimensional descriptor represen-
tation, which, however, is “regular.” 

Finally, consider the system 

= + = =� , ,x u v z v y u  
Accordingly, we let 

» E

E =

1

» A

A =

0

» B

B =

1 1

» C

C =

0

0

» D

D =

1 0

0 1

We successively have

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1); length(a),d

ans =

3
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d =

1 1

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11'); length(a),d

ans =

4

d =

0 1

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11','D22'); length(a),d

ans =

5

d =

0 1

1 0 

First consider the case that 21D  does not have full row rank.  

Let the rows of the matrix N span the left null space of E, so that NE = 0. Then by multiplying the 
descriptor equation = + +� 1 2Ex Ax B w B u  on the left by N we obtain the set of algebraic equa-
tions = + +1 20 NAx NB w NB u . By adding suitable linear combinations of the rows of this set of 
equations to the rows of the output equation = + +2 21 22y C x D w D u  the rank of 21D  may be 
increased without increasing the dimension of the pseudo state x. 

If after this operation 21D  still does not have full row rank then we apply a suitable transforma-
tion to the output equation = + +2 21 22y C x D w D u  so that it takes the form 

      
= = + +      

      
1 21 221211

2 22 2220

y C DD
y x w u

y C D
 

where 211D  has full row rank. It is easy to construct a matrix 212D  so that 

 
 
 

211

212

D

D
 

has full row rank. Following this we redefine the output equation as 

Algorithm 
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         ′= = + + +        
        

1 21 211 221

2 22 212 222

0y C D D
y x x w u

y C D DI
 

where ′x  is an additional component of the pseudo state. This component is accounted for by 
adding the algebraic equation 

′= + 2120 x D w  
to the descriptor equation. This increases the dimension of the pseudo state, of course. 

If 12D  does not have full rank then the procedure as described is applied to the “dual” system. 

If, say, 22D  is nonzero then we use singular value decomposition to write =22D USV , where S 
is square nonsingular. Adding the equation ′ =x SVu  to the descriptor equations we may now 
rewrite the equation for y as 

′= + + = + +1 21 22 1 21y C x D v D u C x Ux D v  
If needed, 11D  is similarly removed.  

The macro dssreg displays error messages in the following situations. 

• The input parameters have inconsistent dimensions. 

• 12D  is not tall or 21D  is not wide. 

• The relative error exceeds 1e-6. The relative error is computed on the basis of the largest of 
the differences of the frequency responses of the system before and after regularization at the 
frequencies 1, 2, …, 10. 

In verbose mode the relative error is always reported. 

dssrch ∞H optimization for a descriptor plant 

dssmin dimension reduction of a descriptor system 

dssh2 2H  optimization of a descriptor system 

 

Diagnostics 

See also 
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gare 

Generalized algebraic Riccati equation 

[X,F] = gare(A,B,C,D,E,Q,R,tol);

This routine computes the solution X of the generalized algebraic Riccati equation  
−+ + − + + =

=

1( ) ( ) 0T T T T T T T

T T

X A A X C QC X B C D R B X D C

X E E X
 

and the gain 
−= +1( )T TF R B X D C  

such that the feedback law = −u Fx  stabilizes the descriptor system  

= +�Ex Ax Bu  
and makes the impulsive modes non-impulsive. Finite closed-loop poles on the imaginary axis are 
allowed. If the descriptor system is not stabilizable or impulse controllable then X is returned as a 
matrix filled with Infs. In this case F still has a well-defined solution. The corresponding feed-
back law stabilizes the stabilizable modes and makes the controllable impulsive modes non-
impulsive. 

The optional tolerance tol is used by the routine clements and also to test whether the GARE 
has a finite solution. Its default value is 1e-12. 

This function is new in the Polynomial Toolbox. 

Let 

     
= = =     
     

= =  

1 0 1 0 1
, ,

0 1 0 2 0

2 1 , 1

E A B

C D

 

= 1Q , = 1R . The system has an uncontrollable mode with eigenvalue 2. Accordingly, we obtain 

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

Inf Inf

Inf Inf

F =

2 0

Purpose 
Syntax 
Description 

Compatibility 
Example 
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» roots(s*E-A+B*F)

ans =

2.0000

-1.0000

On the other hand, 

     
= = =     −     

= =  

1 0 0 1 0
, ,

0 0 1 0 1

0 1 , 1

E A B

C D

 

is controllable. We now have 

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

1.0e-015 *

0 0

-0.0754 -0.1601

F =

-0.0000 1.0000

» roots(s*E-A+B*F)

ans =

-1.0000 

The algorithm for the solution of the GARE relies on transforming the associated Hamiltonian 
pencil to Clements form (Kwakernaak, 2000). 

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust Control De-
sign,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 21–23 June 2000, Prague, 
Czech Republic. 

The macro gare issues error messages if the input data have inconsistent dimensions. 

clements Clements transformation of a matrix pencil 

 
 

Algorithm 

Reference 

Diagnostics 
See also 
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h2 

H2-optimization 

[Y,X,clpoles,fixed] = H2(N,D,nmeas,ncon[,tol][,’check’])

Given a continuous-time generalized plant of the form 

    
=     

    ���	��


11 12

21 22

G Gz w

G Gy u

G

 

with G represented in the left coprime polynomial matrix fraction  form −= 1G D N , the com-
mand  

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas)

computes the compensator =u Ky  in right polynomial matrix fraction form −= 1K YX  that 
minimizes the 2-norm 2H  of the closed-loop transfer matrix 

−= + − 1
11 12 22 21( )H G G I KG KG  

from v to z. The norm is defined by 

ω ω ω
π

∞

−∞

= −∫2
2

1
tr ( ) ( )

2
TH H j H j d  

 
Fig. 2 . Generalized plant 

The input parameter ncon is the number of control inputs and nmeas is the number of measured 
outputs. The output parameter clpoles contains the (non-fixed) closed-loop poles and fixed 
the fixed-plant poles.  

In the optional forms 

Purpose 
Syntax 
Description 
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[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol)

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,'check')

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol,'check') 

the parameter tol is a tolerance. Its default value is 1e-8. If the option 'check' is present then 
the routine checks whether the 2H  optimization problem has a solution, and exits if no solution 
exists. If the option is not invoked then the routine produces a solution even if none exists. In the 
latter case the closed-loop transfer matrix either has poles on the imaginary axis or is not strictly 
proper. 

Nonproper generalized plants are allowed. Fixed open-loop poles (that is, uncontrollable or unob-
servable poles) cannot have strictly positive real parts but may be located on the imaginary axis. 

This function is new in the Polynomial Toolbox. 

Example 1: 2H  design problem 

Consider the block diagram of Fig. 1.  The plant is a MIMO system with transfer matrix 

 

 
Fig. 3. Design problem 

 

Compatibility 
Examples 
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 
 + =
 
 + 

2
1 1

2
( )

1
0

2

ssP s

s

 

The controlled output is 

  
=  
 

11

12

z
z

z
 

The measured output  

 
=  
 

1

2

y
y

y
 

is corrupted by colored measurement noise generated by the two shaping filters with transfer func-
tions 

+
1

1 /10s
    and    

+
1

1 / 20s
 

The second component of the disturbance 

 
=  
 

1

2

v
v

v
 

is passed through a shaping filter with transfer function 1/ s  to ensure integrating action on both 
input channels. The input 

 
=  
 

1

2

u
u

u
 

is weighted with dynamic weighting functions with transfer functions +1(1 )c rs  (to ensure suffi-
cient high-frequency roll-off of the compensator) and 2c s  (both for high-frequency roll-off and to 
allow integral control at the second input channel). 

The generalized plant that defines the 2H  problem is given by 
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 
 + + 
 
 + + 
 + 

= =   
   

 
 

+ + + 
 
 

+ + +  

2 2

11 12 1

21 22 2

2 2

1 1 1 1
0 0

( 2) 2
1 1

0 0 0 0
( 2) 2

( ) ( ) 0 0 0 0 (1 ) 0
( )

( ) ( ) 0 0 0 0 0
1 1 1 1 1

0
( 2) 1 /10 2

1 1 1
0 0 0

( 2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s

 

The transfer matrix may be entered in rational format and then converted to a left polynomial ma-
trix fraction by the command rat2lmf:

c1 = 1; c2 = 1; r = 5;

Num = [ 1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1 ];

Den = [ s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

1 s*(s+2) 1 1+s/20 1 s+2 ];

[N,D] = rat2lmf(Num,Den)  

N =

0 0 0 0 0.2 + s 0

0 0 0 0 0 s

1 20 + s 0 0 0 20 + s   

The solution of the 2H  problem follows by typing 



h2  39 

The Polynomial Toolbox for MATLAB 

[Y,X,clpoles,fixedpoles] = H2(N,D,2,2)   

Y =

0.044 + 0.25s + 0.023s^2 0.014 + 0.042s + 0.0022s^2

0.54 + 0.4s + 0.04s^2 -0.3 - 0.15s - 0.0065s^2

X =

0.41 + s + 0.76s^2 + 0.27s^3 0.13 - 0.12s - 0.064s^2

-0.21 + 0.16s + 0.09s^2 - 0.27s^3 -0.065 - 0.83s - s^2 - 0.38s^3

clpoles =

-1.8586

-1.8477

-0.7541 + 0.6556i

-0.7541 - 0.6556i

-0.2991 + 0.4534i

-0.2991 - 0.4534i

-0.8073

-0.5388

-0.4545

fixedpoles =

0

-20.0000

-10.0000

The compensator may be converted to rational form by the command 

[NumK,DenK] = rmf2rat(Y,X)   

The compensator is given by 

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058

4.4 13 17 14 5.6 (4.4 13 17 14 5.6 )
( )

0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s

s s s s s s s s s s s
K s

s s s s s s s s

s s s s s

 
 
 
 

+ 
 + + + + + 

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6 )

s s

s s s s s s

 



40 New Functions in Version 2.5 of the Polynomial Toolbox  
  

   

Inspection shows that integrating action is included in the second input channel as intended. 

Example 2: Wiener filtering problem 

Wiener filtering problems may be defined as follows. A message signal x is given by 

= 1( )x H s v  
where v is a standard white noise process. The observed signal y is related to the message process 
by 

= 2( )y H s v  

1H  and 2H  are stable rational transfer matrices. It is desired to estimate the message signal x by 
filtering the observed signal y. 

 
Fig. 4. Wiener filter configuration 

Fig. 4 shows the system configuration. Inspection shows that the generalized plant that defines the 
2H -problem is given by 

−    
=     

    ��	�


1

2 0

G

H Iz v

Hy u
 

By way of example, suppose that x and y are related as 

= +y x n  
where the  observation noise n is independent of the message signal x. The message signal is gen-
erated by the shaping filter 

=
+

12
1

( 1)
x v

s
 

with 1v  white noise, and the noise is given by 

ω σ
ζω ω

=
+ +

2

22 22
o

o o

n v
s s
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where the white noise 2v  is independent of 1v . We let ω = 1o , ζ = 0.01  and σ = 0.1 so that the 
measurement noise is not very large but  has a relatively sharp peak at the cut-off frequency of the 
message signal. This defines 

ω σ
ζω ω

 
=  

+  
 

=  
+ + +  

1 2

2

2 2 2 2

1
( ) 0

( 1)

1
( )

( 1) 2
o

o o

H s
s

H s
s s s

 

so that 

ω σ
ζω ω

 − + 
=  
 
 + + + 

2

2

2 2 2

1
0 1

( 1)
( )

1
0

( 1) 2
o

o o

s
G s

s s s

 

The following commands solve this problem:

d1 = (s+1)^2; n1 = 1;

omo = 1; zeta = 0.01; sigma = 0.1;

d2 = s^2+2*zeta*omo*s+omo^2; n2 = omo^2*sigma;

Num = [ 1 0 -1

1 n2 0 ];

Den = [ d1 1 1

d1 d2 1 ];

[N,D] = rat2lmf(Num,Den);

[Y,X,clpoles] = H2(N,D,1,1)   

The solution is returned as

Y =

0.91 + 0.018s + 0.91s^2

X =

1 + 0.2s + s^2

clpoles =

-0.1000 + 0.9950i
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-0.1000 - 0.9950i 

The command 

bode(pol2mat(Y),pol2mat(X))   

produces the Bode plot of the filter of Fig. 5. The filter is a notch filter that removes the colored 
measurement noise as best as it can. 

 
Fig. 5. Bode diagram of the Wiener filter 

 
The solution is obtained by Wiener-Hopf optimization (Kwakernaak, 2000). 

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust Control De-
sign,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 21–23 June 2000, Prague, 
Czech Republic. 

The macro h2 issues error messages if 

� 12G  does not have full column rank or 21G  does not have full row rank 

� The generalized plant has unstable fixed poles 

If the option ‘check’ is activated then error messages are issued if 

� The plant has fixed poles on the imaginary axis that cannot be canceled 

� The closed-loop system transfer matrix cannot be made strictly proper 

Algorithm 
Reference 

Diagnostics 
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Warning messages are issued if 

� 21N  or 12N  have zeros on the imaginary axis 

� The closed-loop system has one or more poles on the imaginary axis 

The polynomial matrices 21N  and 12N   occur in the left en right coprime fractional representa-
tions 

− −  
= =         

   

121 112
21 22 22 21 22 22

22 22
,

G N
G G D N N D

G N
 

If these polynomial matrices have roots on the imaginary axis then the two spectral factorizations 
will also involve roots on the imaginary axis, which may make the factorizations fail. 

dsshinf ∞H  suboptimal compensator for descriptor systems 

mixeds Solution of a SISO ∞H  mixed sensitivity problem 

plqg Polynomial solution of a MIMO LQG problem 

splqg Polynomial solution of a SISO LQG problem 

 

 

See also 
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jury 

Create the Jury matrix corresponding to a polynomial 

J = jury(p,k)

J = jury(p,k,'rev')

The command 

J = jury(p,k))

creates the constant Jury matrix J of dimension − × −( 1) ( 1)k k  corresponding to the polynomial 
p. If 

= + + +"0 1( ) d
dp v p p v p v  

and ≤k d  then 

 

− −

−

− − −

− −

   
   
   
   = −
   
   
      

" "
" "

# # # # # # # # # #
"
"

1 2 3 2 0

1 4 3 0 1

1 0 1 4 3

0 1 2 3 2

0 0 0 0
0 0 0 0

( )

0 0 0 0 0
0 0 0 0 0

k k k

k k

k k k k

k k k

p p p p p p

p p p p p p

J p

p p p p p p

p p p p p p

 

The default value of k is d. 

 With the syntax 

J = jury(p,k,'rev')

the coefficients …0 1, , , kp p p  are reversed. 

The Jury matrix is quite useful when analysing the robust stability of discrete-time systems by 
polynomial methods. In the Polynomial Toolbox the function is called by the function stabint 
when computing stability interval. 

This function is new in the Polynomial Toolbox. 

The Jury matrix of the polynomial 

P = 1+z+2*z^2+3*z^3+4*z^4+5*z^5   

p =

1 + z + 2z^2 + 3z^3 + 4z^4 + 5z^5   

simply is 

J = jury(p)   

Purpose 
Syntax 

Description 

Compatibility 
Examples 
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J =

5 4 3 1

0 5 3 2

0 -1 4 2

-1 -1 -2 2   

A version of reduced size is obtained by typing 

J4 = jury(p,4)   

J4 =

4 3 1

0 3 2

-1 -1 2   

The macro uses standard MATLAB operations. 

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company. New 
York, 1994. 

The function displays no error messages. 

hurwitz Hurwitz matrix for a polynomial

stabint robust stability interval

 

Algorithm 
References 

Diagnostics 

See also 
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pdisp 

Display a polynomial or polynomial matrix without its name 

pdisp(M)

The command 

pdisp(M)

displays the polynomial matrix M without printing the name. 

Typing 

M = [s+1 s^2+s] 

M =

1 + s s + s^2 

displays the matrix M including its name. The name is suppressed by typing 

pdisp(M) 

     1 + s s + s^2

This command is new in the Polynomial Toolbox. 

The macro uses standard MATLAB commands. 

 

Purpose 
Syntax 
Description 

Example 

Compatibility 
Algorithm 
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pformat rootr, pformat rootc 

Format a polynomial or polynomial entry 

pformat rootr

pformat rootc

The Polynomial Toolbox can display polynomial matrices in various formats under the control of 
the command pformat. In addition to the formats available in Version 2.0 (see the Manual for 
details) two more options were included in Version 2.5 that allow to display polynomials in terms 
of their roots.  

By specifying the format rootr a polynomial with real coefficients is expressed as a product of 
first and second order factors. Every real root results in real factor of degree 1 while a pair of com-
plex conjugate roots results in a real factor of degree 2.  

The other new display format rootc returns a product of factors of degree 1 only. A pair of com-
plex conjugate roots now results in a pair of first degree factors with complex coefficients. 

For polynomials with complex coefficients the two new formats display identical results with 
factors of degree 1 only.  

For polynomial matrices the formats apply to each of the entries. 

In Version 2.0 use of the options results in an error message. 

By way of example, create a simple polynomial 

P = (s-1)*(s+2)*(s+3*i)*(s-3*i);

In the default display format symbs the polynomial is displayed as

p

p =

-18 + 9s + 7s^2 + s^3 + s^4   

Changing the display format to rootr results in 

pformat rootr

p   

p =

(s+2.0000)(s^2+9.0000)(s-1)   

The other new display format rootc returns a product of factors of degree 1 only. A pair of com-
plex conjugate roots now results in a pair of first degree factors with complex coefficients: 

Purpose 
Syntax 

Description 

Compatibility 
Examples 
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pformat rootc

p   

p =

(s+2.0000)(s+3.0000i)(s-3.0000i)(s-1)   

To view the effect on polynomial matrices consider 

pformat rootr 

[s^2+2*s+1 s+s^2]

ans =

(s+1)(s+1) s(s+1) 

The routine uses standard MATLAB operations. 

pformat Control the display format of polynomials and polynomial matrices 

 

 

Algorithm 

See also 
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pol2tex 

Conversion of a polynomial object into LaTeX code 

Tex_str = pol2tex(A1,A2,…,AN)

Tex_str = pol2tex(A1,A2,…,AN,’File_name’)

The command 

Tex_str = pol2tex(A1,A2,…,AN)

converts the polynomial matrices or standard MATLAB matrices A1,A2,…,AN into a string
Tex_str  in LaTeX code to be used in LaTeX source files. LaTeX is a well-known document 
preparation system that is especially effective for text containing many mathematical formulas 
including matrices [1]. The output string comprises a sequence of LaTeX commands to create an 
array surrounded by bracket delimiters in display mathematical mode. The user is expected to copy 
this string to a LaTeX source file.  

Alternatively, the command 

Tex_str = pol2tex(A1,A2,…,AN,’File_name’) 

appends Tex_str to the existing file File_name.tex. If the file does not exist then the out-
put string is saved in a newly created TEX file. This file, however, does not contain any LaTeX 
preamble and hence cannot be compiled by LaTeX as it is. Instead, it can be related to another 
TEX file using LaTeX command input or the include statement. 

The macro allows any number of input arguments. The resulting format is given by the  currently 
active display format, which is controlled by the functions pformat and format. 

This function is new in the Polynomial Toolbox. 

The following examples illustrate how the command should be used. 

Example 1 

Consider a polynomial matrix C given by 
» C=[-8+s 1-6*s 6+6*s; 0 2 1; -1+4*s-3*s^2 2.1e-5 11-s] 
C =

-8 + s 1 - 6s 6 + 6s

0 2 1

-1 + 4s - 3s^2 2.1e-005 11 – s 
which should be included in a LaTeX based document. Calling pol2tex creates the string 

» pol2tex(C)

Purpose 
Syntax 

Description 

Compatibility 
Examples 
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ans =

$$

C=

\left[ \begin{array}{lll}

-8+s & \;\;\;1-6s & \;\;\;6+6s \\

\;\;\;0 & \;\;\;2 & \;\;\;1 \\

-1+4s-3s^{2} & \;\;\;2.1*10^{-5} & \;\;\;11-s

\end{array} \right]

$$ 
This string may be further edited if necessary. If the string is copied into an existing LaTeX file 
and compiled by LaTeX then one gets the fairly nice result 

2 5

8 1 6 6 6

0 2 1

1 4 3 2.1 10 11

s s s

C

s s s−

 − + − + 
 
 =  
 − + − × −  

 

Example 2  

As another example consider a constant matrix B  

B =

0.2200 -0.3333 0.1222 4.0000

-0.6364 8.0000 0.0927 0.4000

and change the format to rational

» format rat

» B

B =

11/50 -1/3 11/90 4

-7/11 8 29/313 2/5 

Then  

» pol2tex(B)

ans =

$$
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B=

\left[ \begin{array}{llll}

\;\;\; \frac{11}{50} & -\frac{1}{3} & \;\;\; \frac{11}{90} &
\;\;\; 4 \\ \\

-\frac{7}{11} & \;\;\; 8 & \;\;\; \frac{29}{313} & \;\;\;
\frac{2}{5}

\end{array} \right]

$$ 

LaTeX returns this as  

 
The macro uses standard MATLAB 5 operations. 

The macro displays error messages if  

� There are not enough input arguments. 

� The class of the input argument is inappropriate. 

Leslie Lamport, LaTeX: A Document Preparation System. Addison-Wesley, Reading, Massachu-
setts, 1994. 

char Convert a polynomial object to a string

pformat Set the output format for a polynomial object 

 
 

 

Algorithm 
Diagnostics 

References 

See also 
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psseig 

Polynomial approach to eigenstructure assignment for a state-space system 
L = psseig(F,G,P[,TOL])

Given a linear system 

= +�x Fx Gu      
where F is an ×n n  constant matrix and G is an ×n m  constant matrix, and 

a set of polynomials { }= ≤…1 2( ), ( ), , ( ) ,rP p s p s p s r m , the command 

L = psseig(F,G,P) 

returns, if possible, a constant matrix L such that the closed-loop matrix of the controlled system 

= −� ( )x F GL x  
has invariant polynomials …1 2( ), ( ), , ( )nq s q s q s , where  

+

=
=

=
= = =

#

"

1 1 2

2 2 3

1

( ) ( ) ( )

( ) ( ) ( ),

( ) ( ),

( ) ( ) 1
r r

r n

q s p s q s

q s p s q s

q s p s

q s q s

 

Such a matrix exists if and only if the fundamental degree inequality 

+ + ≥ + +" "1 2 1 2deg deg deg k kq q q c c c  
holds for all = …1,2, ,k r , where ≥ ≥ ≥"1 2 rc c c are the controllability indices of the pair (F,G). 
Moreover, equality must hold for k = r. If the input polynomials P do not satisfy these conditions 
then the macro issues an error message. 

A tolerance TOL may be specified as an additional input argument. Its default value is the global 
zeroing tolerance. 

This function is new in the Polynomial Toolbox. 

The dynamics of an inverted pendulum linearized about the equilibrium position are described by 
the equation 

= +�x Fx Gu  
where 

Purpose 
Syntax 
Description 

Compatibility 
Examples 
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   
   −   = =
   
   
−      

0 1 0 0 0
10.7800 0 0 0 0.2000

,
0 0 0 1 0

0.9800 0 0 0 0.2000

F G  

The desired closed-loop poles are selected as 
− ±
− ±
1

2 2

j

j
 

This yields the invariant polynomial 

ψ = + + + +4 3 2
1( ) 6 18 24 16s s s s s  

Since = 1m , one has 

ψ ψ ψ= = =2 3 4( ) ( ) ( ) 1.s s s  
We aim to find a feedback gain matrix L so that the state feedback law = −u Lx  assigns these 
invariant polynomials to the closed loop system matrix −F GL . The corresponding code is as 
follows: 

F=[0,1,0,0;10.78,0,0,0;0,0,0,1;-0.98,0,0,0]   

F =

0 1.0000 0 0

10.7800 0 0 0

0 0 0 1.0000

-0.9800 0 0 0   

G=[0;-0.2000;0;0.2000]   

G =

0

-0.2000

0

0.2000   

P = s^4 + 6*s^3 + 18*s^2 + 24*s + 16;   

L=psseig(F,G,P)   

Constant polynomial matrix: 1-by-4

L =
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-1.5e+002 -42 -8.2 -12   

det(s*eye(4)-F+G*L)-P   

Zero polynomial matrix: 1-by-1, degree: -Inf

ans =

0   

The algorithm is fully described in reference [1]. It may be summarized as follows: 

1. A coprime matrix polynomial fraction description ( ), ( )r rA s B s  is computed for the system 
with the macro ss2rmf. 

2. The controllability indices (the column degrees of ( )rA s ) are sorted and the fundamental 
degree condition for invariant polynomials assignment is checked. 

3. A polynomial matrix ( )rC s  featuring the controllability indices and the desired invariant 
polynomial factors is built. 

4. The Diophantine equation + =( ) ( ) ( ) ( ) ( )L r l r rX s A s Y s B s C s is solved for a constant solu-
tion ,L lX Y  with the macro xaybc. 

5. The constant feedback matrix −= 1
L lL X Y $ is constructed. 

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback Control.”  Pro-
ceedings of the IEEE International Symposium on Computed-Aided Control System Design, IEEE, 
pp. 380–385, Kohala Coast, Hawaii, August 1999.  

The macro produces error messages if 

• the input matrices have incompatible dimensions 

• there is an incorrect number of invariant polynomials 

• some invariant polynomial is zero 

• the fundamental degree condition is not satisfied 

psslqr Polynomial approach to linear-quadratic regulator design for state-space sys-
tems 

 

Algorithm 

References 

Diagnostics 

See also 
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psslqr 

Polynomial approach to linear-quadratic regulator design for state-space systems 
L = psslqr(F,G,H,J[,TOL])

Given a linear system 

= +�x Fx Gu      
where F is an ×n n  constant matrix and G is an ×n m  constant matrix, and a regulated variable 

= +z Hx Ju  
where H is a ×p n  constant matrix and J is a ×p m  constant matrix, the command 

L = psslqr(F, G, H, J)

returns a constant matrix L such that the control function = −u Lx minimizes the 2L -norm of z 
for every initial state x(0). 

It is assumed that 

= =0,T TJ H J J I    
A tolerance TOL may be specified as an additional input argument. Its default value is the global 
zeroing tolerance. 

This function is new in the Polynomial Toolbox. 

The linearized model of the vertical-plane dynamics of an AIRC aircraft is described by the equa-
tions 

= +
= +
� L

L

x Fx G v

y Hx J v
 

where 

 
 
 
 =
 
 
  

0 0 1.1320 0 -1
0 -0.0538 -0.1712 0 0.0705

,0 0 0 1 0

0 0.0485 0 -0.8556 -1.013
0 -0.2909 0 1.0532 -0.6859

F  

 
 =  
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

H  

Purpose 
Syntax 
Description 

Compatibility 
Examples 
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We want to design a linear Gaussian filter for the covariance matrices given by 

 
 
 
 =
 
 
  
 
 =  
  

0 0 0 0 0 0
-0.1200 1 0 0 0 0

,0 0 0 0 0 0
4.4190 0 -1.6650 0 0 0
1.5750 0 -0.0732 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

L

L

G

J

 

The corresponding code is as follows: 

F = [0,0,1.1320,0,-1;0,-0.0538,-.1712,0,0.0705;0,0,0,1,0;
0,0.0485,0,-0.8556,-1.0130;0,-0.2909,0,1.0532,-0.6859]   

F =

0 0 1.1320 0 -1.0000

0 -0.0538 -0.1712 0 0.0705

0 0 0 1.0000 0

0 0.0485 0 -0.8556 -1.0130

0 -0.2909 0 1.0532 -0.6859   

H = [1,0,0,0,0;0,1,0,0,0;0,0,1,0,0]   

H =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0   

GL = [0,0,0,0,0,0;-
0.12,1,0,0,0,0;0,0,0,0,0,0;4.4190,0,1.665,0,0,0;

1.575,0,-0.0732,0,0,0]  

GL =

0 0 0 0 0 0

-0.1200 1.0000 0 0 0 0

0 0 0 0 0 0
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4.4190 0 1.6650 0 0 0

1.5750 0 -0.0732 0 0 0   

JL = [0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1]   

JL =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1   

L = psslqr(F',H',GL',JL')   

Constant polynomial matrix: 3-by-5

L =

1 0.066 -0.21 -0.45 -0.81

0.066 0.94 -0.069 -0.053 -0.25

-0.21 -0.069 1.8 1.6 2.2   

The algorithm is fully described in reference [1]. It may be summarized as follows:  

1. A coprime matrix polynomial fraction description ( ), ( )r rA s B s  is computed for the system 
with the macro ss2rmf. 

2. A polynomial matrix ( )rC s with 2L -optimal eigenstructure is computed with the spectral 
factorization macro spf.  

3. The Diophantine equation + =( ) ( ) ( ) ( ) ( )L r l r rX s A s Y s B s C s is solved for a constant solu-
tion ,L lX Y  with the macro xaybc. 

4. The constant feedback −= 1
L lL X Y is constructed. 

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback Control.” Pro-
ceedings of the IEEE International Symposium on Computed-Aided Control System Design, IEEE, 
pp. 380–385, Kohala Coast, Hawaii, August 1999.  

The macro produces error messages if  

• the input matrices have incompatible dimensions  

• the orthogonality condition on covariance matrices does not hold 

psseig Polynomial approach to eigenstructure assignment for state-space system 

 

Algorithm 

Reference 

Diagnostics 

See also 
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sarea, sareaplot 

Robust stability area for polynomials with parametric uncertainties 

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new']) 

The command 

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

investigates the robust stability of a family of polynomials depending on m uncertain parameters. 
By gridding the parameter space the family is split into a number of standard polynomials that are 
separately checked for stability. The m-dimensional grid is defined by the vectors of parameter 
values …1, , mq q , and the results are stored in an m-dimensional array S structured accordingly. 
As expected, in S 1s stand for “stable” and 0s for “unstable.”  

For details on checking the stability of a single polynomial please read the description of macro 
isstable. The parameters …0 , , np p  are given fixed polynomials that serve to define the 
uncertainty structure. Note that the input arguments representing both the parameters and the fixed 
polynomials must be written using their names (rather than values) in the function call.  

The uncertainty structure of the polynomial family is defined by the string variable Expres-
sionString. This string may contain any MATLAB-like expression composed of the parameter 
names (acting here as scalars) and of the names of the fixed polynomials.  

The procedure is better explained in the examples below. For three or more uncertain parameters 
dense gridding may result in slow performance. Typing  

verbose yes

before the run activates an on-line info on the macro performance. 

Once the array S is available, it may be plotted by typing one of  
sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new']) 

for the case of one, two or three parameters, respectively. As before the parameters 1 2 3, ,q q q  
must be typed by names and not by values. The optional argument PlotType specifies the type 
of plot. It may be a surface plot (default or PlotType='surf' ), a point plot (Plot-
Type='points'), or a combination of the two (PlotType='both'). The surface plot is 

Purpose 
Syntax 

Description 
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usually nicer but may miss some details, while the point plot is always complete. With the input 
string argument 'new' the plot is displayed in a new window. 

These functions are new in the Polynomial Toolbox. 

The following examples illustrate how the command should be used. 

Example 1  

Consider an uncertain polynomial 

= + + +1 2 0 1 2 1 2 2( , , ) ( ) ( ) ( ) ( )p s q q p s q q p s q p s  

composed of three fixed polynomials 

= + + +

= − +

= +

2 3
0

2
1

4
2

4  8   5   

1   

   

p s s s

p s s

p s s

 

and  two real parameters ∈ −  1 6,12q  and ∈ −  2 5,15q . Suppose you want to check which 
values of 1q  and 2q  give rise to a stable 1 2( , , )p s q q . As there are two parameters and the uncer-
tainty structure is quite complicated there is hardly any theoretical method known to help. Never-
theless, simple gridding can do the job in a reasonable time.  

To start, insert the data 
p0 = 4+8*s+5*s^2+s^3; p1=1-s+s^2; p2=s+s^4;

and choose an appropriate grid, such as 
q1 = -6:.1:12; q2=-5:.1:15;

Then construct the stability area array by typing 

S = sarea(q1,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2); 

and plot it with the help of 

sareaplot(q1,q2,S)   

What you get is the really nice picture displayed in Fig. 1. It shows which combinations of 
parameter values yield a stable polynomial. 

It is a must here to use names rather than values as the input arguments for both the parameters and 
the polynomials. Violation of this rule causes an error message: 

S=sarea(-6:.1:12,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2);

??? Error using ==> sarea

Compatibility 
Examples 
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The input argument of parameter vector or polynomial must be a
named variable.   

 
Fig. 6. Stability area of Example 1 

Example 2 

For the same three fixed polynomials, but a different uncertainty structure 

= + + 3
1 2 0 1 2 1 2 1( , , ) ( ) ( ) ( )p s p s p s p sλ λ λ λ λ  

and parameters λ ∈ −  1 20,20  and λ ∈ −  2 10,10 , we may use the grid 

lambda1 = -20:.1:20; lambda2 = -10:.1:10;

and type 

expr = 'p0+lambda1*lambda2*p1+lambda2^3*p1';

S2 = sarea(lambda1,lambda2,expr,p0,p1,p2);

sareaplot(lambda1,lambda2,S2)

This results in the amusing picture shown in Fig. 7. 
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Fig. 7. Stability area for Example 2 

Example 3 

3-D examples are even nicer but, of course, more time consuming. Consider a three-parameter 
uncertain polynomial 

= + + + 2 2
1 2 3 0 1 1 3 3 1 1 2 2( , , , ) ( ) ( ) ( ) ( )p s q q q p s q q q q p s q q p s  

with 

= + + +

= − + +

= + −

2 3
0

2
1

2
2

( ) 2 4   3   

 ( ) 1.7  0.13   0.29

( ) 1.2  1.2 0.038

p s s s s

p s s s

p s s s

 

and ∈ −  1 2 3, , 20, 20q q q . When inputting the data 

p0 = 2+4*s+3*s^2+s^3;

p1 = -1.7+0.13*s+0.29*s^2;

p2 = 1.2+1.2*s-0.038*s^2; 

q1 = -20:.5:20;q2=q1;q3=q1;
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expr = 'p0+(q1+q1*q2)*q3*p1+(q1^2*q2^2)*p2';

the function called by

S3 = sarea(q1,q2,q3,expr,p0,p1,p2);

needs more than one hour on an average PC. The command  

sareaplot(q1,q2,q3,S3) 

results in Fig. 8. Such a 3-D plot can of course be zoomed or rotated by mouse in the standard 
MATLAB manner. 

Example 4 

We consider another 3-D example of uncertainty structure 

= + − + +2
1 2 3 0 1 3 1 2 3 2( , , , ) ( ) ( )p s q q q p q q p q q p  

with 

 

 
Fig. 8. Stability area for Example 3 
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= + + +

= − −

= − +

2 3
0

2
1

2
2

( ) 2  4   3   

 ( ) 0.5  1.5   

( ) 0.02  2   

p s s s s

p s s s

p s s s

 

∈ − ∈ − ∈          1 2 37,7 , 40,2 , 0,40q q q  

We enter the data 

p0 = 2+4*s+3*s^2+s^3;

p1 = 0.5-1.5*s-s^2;

p2 = 0.02-2*s+s^2; 

expr = 'p0+(q1^2-q3)*p1+(q2+q3)*p2';

q1 = -7:.1:7; q2=-40:2; q3 = 0:0.5:40; 

and run the macros  

S4 = sarea(q1,q2,q3,expr,p0,p1,p2);

sareaplot(q1,q2,q3,S4)  

to obtain Fig. 9. 

The method is trivial: It directly runs a stability test step by step for each particular point of the 
grid. 

The macro sarea displays an error messages if  

• There are not enough input arguments 

• An argument corresponding to parameter or polynomial is not a named variable 

• An invalid argument is encountered 

• The expression string cannot be evaluated (in which case the error message is generated by 
lasterr and hence its text may vary according to the situation encountered). 

The macro sareaplot displays an error messages if  

• An invalid argument or option is encountered 

• There are more than three vectors representing uncertain parameters 

• Input arguments have inconsistent dimensions 

Algorithm 

Diagnostics 
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Fig. 9. Stability area for Example 4 

 

isstable Stability test for a polynomial matrix

vset, vsetplot Value set plot for a parametric polynomial family

 

 

See also 
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sim2lmf, sim2rmf 

LMF and RMF description of a SIMULINK model. 

[N,D] = sim2lmf('model')

[N,D] = sim2lmf('model',X0)

[N,D] = sim2lmf('model',X0,U0)

[N,D] = sim2rmf('model')

[N,D] = sim2rmf('model',X0)

[N,D] = sim2rmf('model',X0,U0)

The command  

[N,D] = sim2lmf('model') 

returns the LMF description for the linearization of the SIMULINK scheme called  'model'. 
The initial conditions for inputs and internal states of related observer-form realization by default 
are supposed to be zero but may be specified as additional input arguments: 

[N,D] = sim2lmf('model',X0) 

[N,D] = sim2lmf('model',X0,U0) 

Similarly, the commands 

[N,D] = sim2rmf('model') 

[N,D] = sim2rmf('model',X0) 

[N,D] = sim2rmf('model',X0,U0)

compute the RMF description of the SIMULINK file 'model'. 

These functions are new in the Polynomial Toolbox. 

Consider the SIMULINK nonlinear model 'pendm' of an undamped simple pendulum depicted 
in Fig. 10. The sim2lmf command may be employed to obtain its linearization:

[N,D] = sim2lmf('pendm')

Constant polynomial matrix: 1-by-1

N =

-1

D =

-9.8 - s^2

Purpose 
Syntax 

Description 

Compatibility 
Examples 
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Without specifying any initial conditions we obtain the linearization around the lower stable posi-
tion of the pendulum. The linear model of an inverted pendulum can be found using the same 
SIMULINK scheme by prescribing the initial angle ϕ π=0 : 

[N,D] = sim2lmf('pendm', [pi 0]) 

Constant polynomial matrix: 1-by-1

N =

-1

D =

9.8 - s^2

The command sim2rmf will of course give the same result in this SISO example. 

 

 
Fig. 10. SIMULINK model of a simple undamped pendulum 

 
The standard SIMULINK command linmod is utilized along with the Polynomial Toolbox mac-
ros ss2lmf and ss2rmf. 

The macros sim2lmf and si2rmf display error messages if  

• The specified SIMULINK model does not exist 

• The length of the initial conditions vector does not match the model dimension 

• An invalid argument is encountered 

Algorithm 

Diagnostics 
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ss2lmf, ss2rmf State-space to LMF and RMF conversion 

polblock Polynomial Toolbox block for SIMULINK 

 

 

See also 
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spherplot 

Plot the value set of a polynomial family with a spherical uncertainty set and independent uncer-
tainty structure for a range of frequencies. 

spherplot(p0,omega,r,W) 

spherplot(p0,omega,r) 

spherplot(p0,omega)

This is a tool for testing robust stability using the Zero Exclusion Condition. A family of polyno-
mials P = {p(⋅ ,q) : q∈ Q} is said to be spherical if p(⋅ ,q) has an independent uncertainty structure 
and the uncertainty set Q is an ellipsoid. The command

spherplot(p0,omega,r,w)

plots the value sets for the spherical polynomial family, where p0 is a nominal polynomial, 
omega is a vector of generalized frequencies, r is a robustness bound and weight is a vector of 
diagonal entries of the weighting matrix W. If the family has an independent uncertainty structure 
then the polynomial family can be expressed in the centered form 

=

= +∑0
0

( , ) ( )
n

i
i

i

p s p s q sq  

where the weighted Euclidian norm of the vector of the uncertain parameters is bounded by 

≤2,W rq  

The command 

spherplot(p0,omega,r)

assumes that the  weighting matrix w is the unit matrix. The command

spherplot(p0,omega)  

assumes that the weighting matrix is the unit matrix and the robustness margin r equals 1. 
The vector of uncertain parameters is then bounded by 

≤2 1q   

As with other tools based on the Zero Exclusion Condition it is necessary to make sure that there is 
at least one stable member of the polynomial family. Also remember that if you enter the weight 
parameter you only assign the vector of diagonal entries and not the whole matrix. 

This function is new in the Polynomial Toolbox. 

Purpose 
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Description 
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spherplot  69 

The Polynomial Toolbox for MATLAB 

 

  
Fig. 11. Value set for Example 1 

Example 1 

Consider the uncertain polynomial 

= + + + + + + +2 3
0 1 2 3( , ) (0.5 ) (1 ) (2 ) (4 )p s q q q s q s q s  

with the uncertainty bound ≤2, 1
W

q  and the weighting matrix ( )= diag 2, 5, 3,1W , that is, 

+ + + ≤2 2 2 2
0 1 2 32q 5 3 1q q q   

Use the graphical method of the Zero Exclusion Principle to test for the robust stability of the 
given uncertain polynomial. First we express the given polynomial in the centered form 

=

= + + + +∑
3

2 3

0

( , ) 0.5 6 4 i
i

i

p s s s s q sq  

with the uncertainty bound unchanged. Now type 

p0 = 0.5+s+6*s^2+4*s^3;

weight = [2,5,3,1];

r = 1; omega = 0:.01:1;   

isstable(p0)   

 

Examples 
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ans =

1   

The graphical representation of the value set for the given range of frequencies is generated by 

spherplot(p0,omega,r,weight) 

and shown in Fig. 11. It can be seen that the Zero Exclusion Condition is violated so we conclude 
that the given polynomial family is not robustly stable. 

 

 
Fig. 12. Value set for Example 2 

Example 2 

Similarly to the previous example, test the following polynomial [1, pp.268] for robust stability 

( ) ( )= + + + + + + +2 3
0 1 2 3( , ) (2 ) 1.4 1.5 (1 )p s q q s q s q sq  

with the uncertain parameters subject to  

≤
2

0.011q  

We type 

p0 = 2+1.4*s+1.5*s^2+s^3; r = 0.011; omega = 0:0.005:1.4;
isstable(p0)   



spherplot  71 

The Polynomial Toolbox for MATLAB 

ans =

1   

spherplot(p0,omega,r)   

This results in Fig. 12. In this case, the origin is excluded from the value set and we conclude that 
the polynomial family is robustly stable. 

The value set at each frequency is characterized [1, p. 270] by an ellipse centered at nominal 
( )0p jω  and with principal axis in the real direction having length 

2 2
0 2 i

i
i even

R r w ω
 
 =   
 
∑  

and principal axis in the imaginary direction having length 

2 2
0 2 i

i
i odd

I r w ω
 
 =   
 
∑  

The number r is a bound on the Euclidean norm of the vector of uncertain parameters, ω  is a 
frequency, and W a weighting matrix given by  

( )2 2 2
1 2, , , nW diag w w w= … . 

[1]  R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company. 
New York, 1994. 

The macro returns error messages if the input arguments are incompatible. 

khplot Value set for an interval polynomial. 

ptopplot Value set for a polytope of polynomials. 

vsetplot Value set for polynomials with general uncertainty structure 
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See also 
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tsyp 

Use the Tsypkin-Polyak function to determine the ∞A robustness margin for a continuous interval 
polynomial. 

R = tsyp(p0,w,epsilon)

R = tsyp(p0,w)

R = tsyp(p0)

R = tsyp(p0,[],epsilon)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,w,epsilon)

[R,W] = tsyp(p0,w)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,[],epsilon)

Given the nominal polynomial p0 the macro finds a robustness margin R such that the resulting 
interval polynomial 

( ) ε ε
=

= + −∑0
0

, ( ) [ , ]
n

i
R i i

i

p s q p s R s  

is robustly stable. The command 

R = tsyp(p0,w,epsilon)

computes the robustness margin for an interval polynomial p0 at frequencies given by the vector w 
and with scale factors given by the vector epsilon. The command 

R = tsyp(p0,w)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors. The command 

R = tsyp(p0)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors and supplies its own 
vector of frequencies. The command 

R = tsyp(p0,[],epsilon)  

uses the supplied scale factors but computes its own frequency vector . The commands 

[R,W] = tsyp(p0)

and

Purpose 

Syntax 

Description 
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[R,W] = tsyp(p0,[],epsilon)

return the computed vector of frequencies as the second output for possible use with the function 
khplot. 

 

If no output is specified then the graphical output of Tsypkin-Polyak function is generated. Also 
shown is the robustness margin square, which is the largest possible square inscribed inside the 
plot of  the Tsypkin-Polyak function. Its size is the robustness margin R. 

This function is new in the Polynomial Toolbox. 

Example 1 

We consider the interval polynomial family Pr with the nominal polynomial given by  

= + + + + + +2 3 4 5 6( ) 676 1365 1019 420 104 15op s s s s s s s   
and scaling factors ε0 = 676, ε1 = 682.5, ε2 = 509.5, ε3 = 210, ε4 = 52, ε5 = 15,  
ε6 = 0. Find a robustness margin R such that the resulting interval polynomial is robustly stable. 
Typing 

p0 = pol([676 1365 1019 420 104 15 1],6);

w = 1:0.01:10;

epsilon = [676 682.5 509.5 210 52 15 0];   

tsyp(p0,w,epsilon)   

ans =

0.2344   

results in Fig. 13. We obtain the robustness margin R = 0.2344, which may be viewed as size of 
the largest possible square inscribed inside the plot of the Tsypkin-Polyak function. 

Compatibility 
Examples 
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Fig. 13. Output for Example 1 

Example 2 — simple feedback 

The nominal pitch control system ([1], pp.101) is described in Fig. 14. Find the robustness margin 
for K = 4.  

0.25s+0.25*0.435

s  +3.456s  +3.457s  +0.719s+0.04164 3 2

Vehicle

4

K

PitchPitch command

 
Fig. 14. Pitch control system 

K = 4;

num = pol([0.25*0.435 0.25],1);

den = pol([.0416 .719 3.457 3.456 1],4);

p0 = den + K*num;   
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[R,W] = tsyp(p0); R   

R =

0.2741   

pminus = p0 - R*p0;

pplus = p0 + R*p0;

khplot(pminus, pplus, W)   

The output is shown in Fig. 15. Restricting the frequency range to lower frequencies (or zooming)  
by typing 

khplot(pminus, pplus, W(1:round(length(W)/3)))  

leads to Fig. 16. Thus we have found the robustness margin R and now it is easy to find the uncer-
tainty bounds on the coefficients of the polynomial: 

Qbounds = [pminus{:}' pplus{:}']

Qbounds =

0.3460 0.6072

1.2478 2.1902

2.5093 4.4047

2.5086 4.4034

0.7259 1.2741

If the coefficients remain within these intervals then the polynomial is guaranteed to be stable. 

The algorithm is based on the Tsypkin-Polyak function GTP(ω) described in [1], pp.97. It finds a 
robust margin R such that the condition  ( )ω

∞
>TPG R  is satisfied for all frequencies (recall 

that ( ) ( ){ }∞ = ∈max Re , Im ,z s z z C  and no degree drop occurs. It uses the standard MAT-
LAB minimization routine fminbnd.  

R. Barmish, New Tools for Robustness of Linear Systems. Macmillan Publishing Company. New 
York, 1994. 

Since the quality of the result of the minimization routine depends considerably on the initial 
guess, the proper choice of the frequency range is important. The program automatically validates 
its result by the testing stability of the four Kharitonov polynomials. If these are not robustly stable 
then the following error message appears: 

Algorithm 

References 

Diagnostics 
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Fig. 15. Output for Example 2 
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Fig. 16. Zoomed output for Example 2 

 

Warning: Resulting margin does not guarantee robust stability

of the interval polynomial. Run again with extended frequency

range and/or denser gridding. 

Also use the graphical output to assess the acceptability of the result. 
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khplot Value set for an interval polynomial. 

kharit Return the Kharitonov polynomials 

 

 

See also 
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vset, vsetplot 

Value set of a parametric polynomial  

V = vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega][,qType])

vsetplot(V[,PlotType][,'new'])

This is another tool for robust stability testing with the help of the Zero Exclusion Condition. The 
command 

V = vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega[,qType]])  

computes the values at the generalized frequencies given by the vector ω  of a family of polyno-
mials depending on m independent parameters. The parameter values that are selected are given by 
the vectors …1, , mq q  and the results are stored in a matrix V  of complex numbers. The values at 
the various frequencies are organized column wise.   

The arguments …0 , , np p  are given fixed polynomials that define the family. The uncertainty 
structure is described by the string variable ExpressionString. This string is a MATLAB-
syntax expression for + +"0 1 0 1( ,..., ) ( ,..., )m n m na q q p a q q p that is composed of the parameter 
names and the names of the fixed polynomials. The “coefficients” 1( ,..., )i ma q q are given by any 
MATLAB-syntax expression consisting of the parameter names acting here as scalar symbols.  

Note that the input arguments representing both the parameters and the fixed polynomials must 
already exist in the current workspace and, moreover, must be written using their names (rather 
than values) in the function call. The use of the command is further explained in the examples 
below.  

Once the value matrix V is available one can plot it by typing   
vsetplot(V[,PlotType][,'new'])

The plot consists of the sets ω( )iV  of values for the generalized frequencies. Depending on the 
optional argument PlotType they can be composed of lines (default or PlotType =
'lines') or points  (PlotType = 'points'). With the input string argument 'new' the 
plot is displayed in a new window. 

By default or with the string argument  qType = 'r' the grid consists of combinations of en-
tries in the vectors  …1, , mq q . When qType='e' the grid consists  of l  points defined by their 
coordinates in m-dimensional space; all the …1, , mq q must be of the same length l..  

This pair of macros tests robust stability of the polynomial family by the Zero Exclusion Condition 
[1]. If the family contains a stable member and if the value set for all generalized frequencies on 
the stability region boundary excludes the point 0 then the family is concluded to be robustly sta-

Purpose 
Syntax 

Description 

Scope 
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ble (stable for all parameters ranging given intervals). For more details, see [1] or another robust 
control textbook.  

To perform the robust stability test we first find a stable member in the family. Typically, the 
nominal value is stable or we proceed by trial and error. Once a stable member is found we substi-
tute into the family several generalized frequencies from the stability boundary and plot the corre-
sponding value sets. It is important to use frequencies leading to value sets close to the point 0. If 
none of the sets contains or touches the critical point then robust stability is verified. 

To plot value sets for special uncertainty structures such as polytopic or even interval uncertainty 
more efficient macros are available, in particular ptopplot and khplot, respectively. 

These functions are new in the Polynomial Toolbox 

To understand the use of command, go through the following simple examples. 

Example 1: Continuous-time case  

Consider an uncertain polynomial 

= + + +1 2 0 1 1 2 2 1 2 12( , , ) ( ) ( ) ( ) ( )p s q q p s q p s q p s q q p s  
composed of four fixed polynomials 

= + + + +

= + + +

= + + +

= + +

2 3 4
0

2 3
1

2 3
2

2
12

1.853  3.164  2.871  2.56

3.773  4.841  2.06

1.985 1.561  1.561

4.032  1.06  

p s s s s

p s s s

p s s s

p s s

 

and check its robust stability for ∈   1 0,1q  and ∈   2 0, 3q . To this end, first enter the data 

p0 = pol([1.853 3.164 2.871 2.56 1],4);

p1 = pol([3.773 4.841 2.06 1],3);

p2 = pol([1.985 1.561 1.561 1],3);

p12 = pol([4.032 1.06 1],2);  

describe the uncertainty structure

expr = 'p0+q1*p1+q2*p2+q1*q2*p12'

and define a reasonable grid for the parameter intervals

q1 = 0:1/50:1; q2=0:3/50:3;

As the polynomials are of continuous-time nature it is necessary to plot value sets for several criti-
cal frequencies on the imaginary axis. Hence, choose ωi  = 1.3, 1.4, 1.6, 1.6  and type

Compatibility 
Examples 
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V = vset(q1,q2,expr,p0,p1,p2,p12,j*[1.3:.1:1.6]);

vsetplot(V,'points')

to obtain the plot of Fig. 17. Note that the value sets are not convex. This typically happens when-
ever the uncertainty structure is multilinear or more complex.  

As one of the value sets (that for ω = 1.4i ) seems to include the critical point 0 we zoom the plot 
in to that of Fig. 18 to see more details. It is evident that ∈0 (1.4)V  and, hence, the family is not 
robustly stable.

 
Fig. 17. Value set for Example 1 

Example 2: Discrete-time case   

Now consider a family of discrete-time polynomials with quite complicated uncertainty 
− − − − −= + − +1 1 1 1 2 1( , , , ) ( ) sin( ) ( ) cos( ) ( ) ( )p z k l m e z k f z k kg z l h z  

where 
− − − −

−

− −

− −

= − + −

=

=

=

1 1 1 1

1

1 1

1 2

( ) ( 1.5)( 2)( 2)

( ) 1

( )

( )  

e z z z z

f z

g z z

h z z
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and  ∈ −  , , 1,1k l m . Here the data to be entered are 

e = (zi-1.5)*(zi+2)*(zi-2);f=1; g=zi; h=zi^2;

uncrty = 'e+sin(k)*f-cos(m)*k*g+(l^2)*h'; 

and, say, 

k = -1:.1:1; l = k; m = k; 

 
Fig. 18. Zoomed plot 

Before using the Zero Exclusion Condition to test robust stability we must check that the family 
contains at least one stable member. Indeed, the nominal polynomial − −=1 1( ,0,0,0) ( )p z e z  is 
stable: 

isstable(e)   

ans =

1   

Now we evaluate and plot value sets at 40 generalized frequencies evenly spread around unit cir-
cle: 

V = vset(k,l,m,uncrty,e,f,g,h,exp(j*(0:2*pi/40:2*pi)));

vsetplot(V)
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and obtain the picture of Fig. 19. As all the sets are far enough to the right of the critical point 
robust stability is verified. 

Example 3: Incorrect calls 

The user must not forget about calling the function with named variable arguments. 

Even if the parameters  

q0 = 1:5; 

already exist in the workspace it must be represented by its name. The following call is definitely 
incorrect 

 
Fig. 19. Value set for Example 2 

vset(1:5,'q0*p',p,j) 

??? Error using ==> vset

Undefined function or variable 'q0'. 

The method is quite easy. The overall picture is composed of the value sets for the generalized 
frequencies. Each set is obtained by substituting the frequencies into the uncertainty formula for all 
parameter values achieved by gridding the parameter set.   

 

Algorithm 
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R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company. New 
York, 1994. 

The macro vset displays an error message if  

� The set of generalized frequencies is not a non-empty vector 

� There are not enough input arguments 

� The expression string cannot be correctly evaluated. Here the error message is returned by 
lasterr and hence its text may vary according to the inconsistency encountered 

The macro vsetplot displays an error message if  

• The value set matrix is not a non-empty 2-dimensional double. 

• An inappropriate input string argument is used. 

khplot Value set for an interval polynomial. 

ptopplot Value set for a polytope of polynomials. 

 

 

 

References 
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