

Version 2.5

The Polynomial Toolbox for MATLAB

Upgrade Information
for Version 2.5

February, 2001

PolyX, Ltd

E-mail info@polyx.com

Support support@polyx.com

Sales sales@polyx.com

Web www.polyx.com

Tel. +420-2-66052314

Fax +420-2-6884554

Jarni 4, Prague 6, 16000

Czech Republic

Polynomial Toolbox Manual

© COPYRIGHT 2001 by PolyX, Ltd.

The software described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement. No part of this manual may
be photocopied or reproduced in any form without prior written consent from PolyX, Ltd.

Printing history: February 2001. First printing.

i

Contents

1 Introduction 1

How to use this document 1
References to other documents 1
New installation instructions 1
Upgrading instructions 3
Documentation 4
A note for SIMULINK 3 users on Windows platforms 5
Compatibility with MATLAB version 6 5

2 What is New in Version 2.5? 7
Overview 7
Bug fixes 7
Improved algorithms and other internal changes 7
New display formats 7
New functions 8
Miscellaneous updates and modifications 10

3 New Functions in Version 2.5 of the Polynomial Toolbox 13
clements1 14
complete 17
dssh2 19
dssreg 26
gare 33
h2 35
jury 44
pdisp 46

ii

pformat rootr, pformat rootc 47
pol2tex 49
psseig 52
psslqr 55
sarea, sareaplot 58
sim2lmf, sim2rmf 65
spherplot 68
tsyp 72
vset, vsetplot 78

How to use this document 1

The Polynomial Toolbox for MATLAB

1 Introduction
This document highlights the new features of Version 2.5 of the Polynomial Toolbox for MATLAB

How to use this document

If you are upgrading to Version 2.5 of the
Polynomial Toolbox from …

Then read ...

Polynomial Toolbox Version 2.0 All sections of the present document.

Polynomial Toolbox Version 1.4 or1.5 for
Matlab 4

The complete documentation of Version 2
and then all sections of the present document.
It may also be necessary to update your MAT-
LAB knowledge.

References to other documents

Throughout this document there are references to the Manual and the Commands volumes of Ver-
sion 2.0 of the Polynomial Toolbox.

New installation instructions

The Polynomial Toolbox 2.5 may be installed in the following simple steps.

• Delete any existing Polynomial Toolbox Version 2.0 (the existing folder
...\polynomial and its contents).

• Copy the whole folder \polynomial including all its contents from the Polynomial
Toolbox CD-ROM Version 2.5 to your PC, preferably next to other MATLAB toolboxes that
all are placed in the folder ...\MATLABR12\toolbox or
...\MATLABR11\toolbox or ...\MATLAB\toolbox.

• Add the folder ...\polynomial to your MATLAB path (for instance by using the
MATLAB Path Browser).

• If you use version 2 of SIMULINK then replace the file ...\polynomial\ pol-
block.mdl, residing in the main Polynomial Toolbox directory, by the file
...\polynomial\simulink2\polblock.mdl. The current version of SIMULINK
can be checked by typing “ver simulink” in the MATLAB main window.

Windows plat-
forms

2 Introduction

• You are recommended to add a new line to your startup.m file containing the command
PINIT. With this modification the Polynomial Toolbox is automatically initialized at the
beginning of every MATLAB session. If you do not do this then you will have to type
PINIT manually each time you start a Polynomial Toolbox session.

• When using the Polynomial Toolbox for the first time after installation you will be asked to
provide your personal license number.

• The standard configuration of the Polynomial Toolbox contains an Acrobat Reader placed
in the folder ...\polynomial\Pdf-files\Acrobat 4.0, which guarantees easy
use of the on-line documentation by the POLDESK command. This configuration requires
no action during the installation and it is recommended for most users. For more details on
using the on-line documentation see the section Documentation.

• Delete any existing Polynomial Toolbox Version 2.0 (the existing directory
.../polynomial and its contents).

• Copy the whole directory /polynomial including all its contents from the Polynomial Tool-
box CD-ROM Version 2.5 to your system, preferably next to the other MATLAB toolboxes
that all are placed in the directory .../MATLABR12/ toolbox or
.../MATLABR11/toolbox or .../MATLAB/toolbox.

• Add the directory .../polynomial to your MATLAB path.

• If you use version 2 of SIMULINK then replace the file ...polynomial/ pol-
block.mdl, residing in the main Polynomial Toolbox directory, by the file
.../polynomial/simulink2/polblock.mdl. The current version of SIMULINK
may be checked by typing “ver simulink” in the MATLAB main window.

• You are recommended to add a new line to your startup.m file containing the command
PINIT. With this modification the Polynomial Toolbox is automatically initialized at the
beginning of every MATLAB session. If you do not do this then you will have to type
PINIT manually each time you start a new Polynomial Toolbox session.

• When using the Polynomial Toolbox for the first time after installation you will be asked to
provide your personal license number.

• To access the Polynomial Toolbox on-line documentation by the command POLDESK your
UNIX system is supposed to run Acrobat Reader by the usual command “acroread.” If
this is not the case then you must create such an alias, or ask your system administrator for
help. For more details on using the on-line documentation see the section Documentation.

UNIX platforms

Upgrading instructions 3

The Polynomial Toolbox for MATLAB

Upgrading instructions

Older versions of the Polynomial Toolbox 2.x may be upgraded to Version 2.5 by executing the
following steps.

• Make sure that your current folder ...\polynomial and all its contents are not read-
only. You can check this by right-clicking a few files and viewing the properties sheet. To
disable the read-only attribute of all files and folders in the Polynomial Toolbox right-click
the top level Polynomial Toolbox folder ...\ polynomial and open the properties
sheet. Uncheck the box “Read-only” and click on OK. In some versions of Windows you
can now select the option “Apply changes to this folder, subfolders and files” and again
click on OK. If this option is not available then repeat the procedure for all subfolders of
...\ polynomial. Alternatively, you may open a DOS-box, change to the folder ...\
polynomial, and type the command “attrib -r *.* /s /d” to disable the read-
only attribute of all files and folders in the Polynomial Toolbox.

• Copy the entire contents of the folder upgrade\polynomial including all subfolders
from the Polynomial Toolbox CD-ROM Version 2.5 to your PC over the contents of the ex-
isting folder ...\polynomial.

• If you still use version 2 of SIMULINK then replace the file ...\polynomial\ pol-
block.mdl, residing in the main Polynomial Toolbox directory, with the file
...\polynomial\simulink2\polblock.mdl. You may check the current version
of SIMULINK by typing “ver simulink” in the MATLAB main window.

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder
...\polynomial including its contents) and then install Version 2.5 following the “New in-
stallation instructions.” In this case you will be asked to provide your personal license number.

• Make sure that your current directory .../polynomial and all its contents are write
enabled. Check this by moving to the directory .../polynomial, typing “ll” and in-
specting the w flag. If the w flag is not present in the user access persissions for all files
then type “chmod u+w *” to set it. Repeat this for all sub-directories.

• Copy the entire contents of the directory upgrade/polynomial including all subfold-
ers from the Polynomial Toolbox CD-ROM Version 2.5 to your computer over the contents
of the existing directory .../polynomial.

• If you still use version 2 of SIMULINK then replace the file .../polynomial/ pol-
block.mdl, residing in the main Polynomial Toolbox directory, with the file
.../polynomial/simulink2/polblock.mdl. You may check the current version
of SIMULINK by typing "ver simulink" in the MATLAB main window.

Windows plat-
forms

UNIX platforms

4 Introduction

Alternatively, you may delete the old Polynomial Toolbox version (the whole folder
...\polynomial including its contents) and then install Version 2.5 following the “New in-
stallation instructions.” In this case you will be asked to provide your personal license number.

Documentation

Three document volumes are provided with the Polynomial Toolbox: Manual, Commands, and
Version 2.5 Upgrade Information. The printed Manual and Version 2.5 Upgrade Information vol-
umes are delivered with the Polynomial Toolbox CD-ROM. The printed Commands volume may
be purchased separately (see the PolyX website or contact info@polyx.cz).

Ready-to-print electronic versions of the Manual, Commands and Version 2.5 Upgrade Informa-
tion are also available. They may be found in ...\polynomial\Pdf-files in the files
manual.pdf, commands.pdf and upgradeinfo25.pdf. The files are all readable by
Acrobat Reader. Users are welcome to print these files for their own use but should not distribute
them any further. For more copyright details see the License Agreement.

On-line electronic versions of the Manual, Commands and Version 2.5 Upgrade Information are
also provided. They are located in the folder ...\polynomial\Pdf-files in the files
OnLineManual.pdf, OnLineCommands.pdf and OnLineUpgradeInfo25.pdf. They
are normally accessed by the Polynomial Toolbox command POLDESK but users are free to create
other arrangements.

On Windows Platforms, POLDESK by default uses Acrobat Reader located in the Polynomial
Toolbox folder ...\polynomial\Pdf-files\Acrobat 4.0 . This configuration is gen-
erally recommended. If an experienced user wishes to employ a different version of Acrobat
Reader located elsewhere then the entire folder ...\polynomial\Pdf-files\Acrobat
4.0 may simply be deleted. During the next execution POLDESK will look for Acrobat Reader in
the standard location C:\Program Files\ Adobe\Acrobat 4.0\Reader\
AcroRd32.exe or will ask the user to provide a valid path name.

On UNIX Platforms, POLDESK by default calls the command “acroread” that typically runs
Acrobat Reader on a UNIX system. If this alias is not recognized then the user or a system admin-
istrator may create such an alias.

Alternatively, the user of each system may type POLDESK RECOVER. This opens a dialogue
window where the user can type in a valid pathname.

A note for SIMULINK 3 users on Windows platforms 5

The Polynomial Toolbox for MATLAB

A note for SIMULINK 3 users on Windows platforms

Under the MS Windows operating systems the way the “simulink” command is processed dif-
fers slightly in versions 2 and 3 or 4 of SIMULINK. The instructions in the Polynomial Toolbox
2.0 Manual (pages 83–84) refer to version 2 of SIMULINK. If you use SIMULINK 3 or 4 under
Windows then please proceed in one of the two following ways:

1. Type

 » simulink

to open the Simulink Library browser. The Polynomial Toolbox 2.0 Simulink library now
is directly accessible within the browser along with the other Simulink libraries.

2. Type

 » simulink3

to open the Simulink Library window. Follow the instructions in the Polynomial Toolbox
2.0 Manual, pages 83–84.

 For further information consult the SIMULINK manual (Using Simulink, Version 3).

Compatibility with MATLAB version 6

The Polynomial Toolbox 2.5 works well with the MATLAB Release 12 products MATLAB 6 and
Simulink 4. In fact, some functions are up to two times faster with MATLAB 6 than before.

MATLAB 6 users will see the Polynomial Toolbox icon in their MATLAB Launch Pad window
among the other MATLAB toolboxes they may have. The Polynomial Toolbox help functions,
demos, Polynomial Matrix Editor and PolyX web site may be directly accessed from the Launch
Pad window.

Clicking a POL object icon in the MATLAB Workspace window does not open the object in an
array editor. We hope to fix this shortcoming in the future but the related MATLAB code is not
open for us currently. Instead, type PME in the command window and open the object in the Poly-
nomial Matrix Editor.

Overview 7

The Polynomial Toolbox for MATLAB

2 What is New in Version 2.5?
Overview

Version 2.5 features the following enhancements.

• Bug fixes to Version 2.0

• Improved algorithms and other internal changes

• New display formats

• Several new functions

• Miscellaneous updates and modifications

Bug fixes

Version 2.5 includes a number of bug fixes. In particular, it includes all patches that were made
available on the PolyX website since the release of Version 2.0.

Improved algorithms and other internal changes

Several algorithms have been improved in Version 2.5 to reflect recent research achievements. In
particular, the linear polynomial matrix equation solvers axb, axbyc, xab, xaybc, and axxa2b
perform faster, in particular for large matrices. These modifications have no impact on the way the
functions are used and hence require no attention on the part of the user. In particular, no changes
were made in the numbers of input and output arguments and their order.

New display formats

Version 2.5 includes several additional display formats for polynomial matrices.

pformat rootr Format a polynomial or polynomial entry as a product of real first-
and second-order factors

pformat rootc Format a polynomial or polynomial entry as a product of first-order
factors

pdisp Display a polynomial matrix without printing the name

8 What is New in Version 2.5?

New functions

Several new functions were added in Version 2.5.

The new routine pol2tex is a great help for authors who use LaTeX.

pol2tex Formats a polynomial matrix for use in a LaTeX document

Version 2.5 offers two new solutions for the standard 2H problem under quite general conditions.

h2 Polynomial solution of the standard 2H optimization problem

dssh2 Descriptor solution of the standard 2H optimization problem

Version 2.5 adds the following new macros to the already impressive list of routines for testing the
stability of interval polynomials

jury Create the Jury matrix corresponding to a polynomial

sarea, sareaplot Robust stability area for polynomials with parametric uncertainties

spherplot Plot the value set ellipses for a spherical polynomial family

tsyp Use the Tsypkin-Polyak function to determine the ∞A robustness
margin for a continuous interval polynomial

vset,vsetplot Value set of parametric polynomial. A tool for robust stability testing
via Zero Exclusion Condition

Version 2.5 includes two polynomial methods for state space systems

psseig Polynomial approach to eigenstructure assignment for state-space sys-
tem

psslqr Polynomial approach to linear-quadratic regulator design for state-space
system

Two brand new routines allow the automatic conversion of SIMULINK block diagrams to LMF and
RMF descriptions.

sim2lmf Simulink-to-LMF description of a dynamic system

sim2rmf Simulink-to-RMF description of a dynamic system

LaTeX format-
ting of polyno-
mial matrices

H2 optimization

Interval poly-
nomials

State space
systems

Simulink rou-
tines

 9

The Polynomial Toolbox for MATLAB

Version 2.5 includes two upgrades of existing numerical utilities and a new numerical function.

clements1 Conversion to Clements standard form (upgrade of clements)

dssreg “Regularizes” a standard descriptor plant (upgrade)

gare Solution of the generalized algebraic Riccati equation

The function complete is a new addition to the collection of polynomial matrix functions.

complete Complete a non-square polynomial matrix to a square unimodular ma-
trix

Three new text based demos have been included in Version 2.5. They are self-explanatory and no
documentation is available. Simply type the name of the demo in the command line.

poldemo This demo reviews several of the functions and operations defined in
the Polynomial Toolbox for polynomials and polynomial matrices

poldemodebe Design of a dead-beat compensator

poldemodet Comparison between numerical and symbolic computation of determi-
nant of a polynomial matrix. This demo requires the Symbolic Toolbox
to be installed

In addition two “shows” have been prepared that run in a graphical interface. Enter the name of the
show in the command line to view the show. No additional documentation is available.

poltutorshow Introduction into the basic operations with polynomials and polynomial
matrices. This is a graphical version of the text based demo poldemo

polrobustshow Overview of parametric robust control tools

Numerical rou-
tines

Polynomial ma-
trix functions

Demos and
shows

10 What is New in Version 2.5?

Miscellaneous updates and modifications

This section lists modifications in various macros that were made after Version 2.0 was released.
The changes leave the macros fully compatible with Version 2.0 and are all reflected in the on-line
help.

There are a number of improvements in axxab.

• By default, the macro axxab now returns a solution with triangular leading coefficient ma-
trix (in the continuous-time case) or triangular constant coefficient matrix (in the discrete-
time case). The option 'tri' is no longer effective but still valid for compatibility reasons.

• By default, the macro now uses the sparse linear system solver and performs no preliminary
rank check.

• The new option ′chk′ turns the preliminary rank check on and activates MATLAB’s built-
in standard (non-sparse) linear system solver.

The macro cgivens1 differs from the implementation in Version 2.5 by the introduction of an
optional tolerance tol. The default value of tol is 0. In the form

[c,s] = cgivens1(x,y,tol)

the routine sets x and y equal to zero if their magnitude is less than tol.

Unimodular polynomial matrices and constant non-polynomial matrices are now considered to be
stable, and not unstable as in Version 2.0.

The macro prand has two new options.

• The option ′mon′ generates a monic polynomial matrix.

• The option ′pos′ generates a polynomial matrix with the required number of zeros. In
particular, the call
 P = prand(degP,I,'pos'[,zeros_vector])
generates a square I-by-I polynomial matrix P but now degP means the required num-
ber of zeros, including multiplicities. Some zeros can be fixed a priori by the optional
vector zeros_vector. Complex conjugate complex parts are added if necessary.

The function call

reverse(P)

with the single input argument P, reverses the order of the coefficients. Thus, if

0 1() n
nP s P P s P s= + + +"

then

Q = reverse(P)

axxab

cgivens1

isstable

prand

reverse

Miscellaneous updates and modifications 11

The Polynomial Toolbox for MATLAB

returns

1 0() n
n nQ s P P s P s−= + + +"

Zeroing management has been changed in this macro. Now, no zeroing is performed by default.
However, an optional tolerance tol may be passed to the macro in one of the forms

P = root2pol(Z,K,tol)

or

P = root2pol(Z,K,tol,var)

In this case all coefficients of the resulting polynomial that are less than tol times the largest
coefficient are neglected. Note that if the tolerance argument is included both the input argument Z
and K needs to be present.

The on-line help has been modified to emphasize that the routine does not work with complex
polynomials.

root2pol

stabint

Miscellaneous updates and modifications 13

The Polynomial Toolbox for MATLAB

3 New Functions in Version 2.5 of the
Polynomial Toolbox

This chapter documents the new functions of Version 2.5 of the Polynomial Toolbox.

14 New Functions in Version 2.5 of the Polynomial Toolbox

clements1

Transformation of a para-Hermitian pencil to Clements form

[C,u,p] = clements1(P)

[C,u,p] = clements1(P,q)

[C,u,p] = clements1(P,q,tol)

The command

[C,u,p] = clements1(P,q,tol)

transforms the para-Hermitian nonsingular real pencil P(s) = sE + A to Clements standard form C
according to

C(s) = u(sE + A)uT = se + a
The matrix u is orthogonal. The pencil C has the form

 +
 

= + = + 
 
− + − + +  

1 1

2 3 3

1 1 3 3 4 4

0 0
() 0

T T T T

se a

C s se a a se a

se a se a se a

The pencil +1 1se a has size ×p p and its finite roots have nonnegative real parts. The matrix 2a
is diagonal with the diagonal entries in order of increasing value.

If the optional input argument q is not present then 2a has the largest possible size. If q is present
and the largest possible size of 2a is greater than ×q q then – if possible – the size of 2a is re-
duced to ×q q . Setting q = Inf has the same effect as omitting the second input argument.

The optional input parameter tol defines a relative tolerance with default value 1e-10. It is
used to test whether eigenvalues of the pencil are zero, have zero imaginary part, or are infinite,
and for other tests. For compatibility with an earlier version of the macro a tolerance parameter of
the form [tol1 tol2] is also accepted but only the first entry is used.

This version is backward compatible with the earlier version (named clement in Version 2.0)
but also handles singular pencils and pencils with roots on the imaginary axis. Because of certain
modifications in the algorithm clements and clements1 generally do not produce the same
output for the same input.

We consider the computation of the Clements form of the para-Hermitian pencil

Purpose
Syntax

Description

Compatibility

Example

clements1 15

The Polynomial Toolbox for MATLAB

− 
 − − =
 − −
 
  

100 0.01 0
0.01 0.01 0 1

()
0 1 0

0 1 0 0

s

P s
s

We first input this matrix as

P = [100 -0.01 s 0; -0.01 -0.01 0 1;-s 0 -1 0;0 1 0 0];

and next compute its Clements form:

[C,u,p] = clements(P);

We have

p, C = pzer(C)

p =

1

C =

0 0 0 -10 + s

0 -1 0 -3.5e-005 - 0.0007s

0 0 1 -0.014 + 0.00071s

-10 - s -3.5e-005 + 0.0007s -0.014 - 0.00071s 99

We see that

− 
+ = − =  

 
1 1 2

1 0
10,

0 1
se a s a

Next we attempt to reduce 2a to the smallest possible size:

[C,u,p] = clements(P,0);

p, C = pzer(C)

p =

2

Polynomial matrix in s: 4-by-4, degree: 1

C =

0 0 0 -10 + s

0 0 1 -0.01 + 5e-006s

16 New Functions in Version 2.5 of the Polynomial Toolbox

0 1 -0.01 -0.0099 + 0.001s

-10 - s -0.01 - 5e-006s -0.0099 - 0.001s 99

We now have

−

− 
+ =  

× −  
1 1 6

0 10

1 5 10 0.01

s
se a

s

while 2a is the empty matrix.

The algorithm is described in Clements (1993) and in slightly more detail in Kwakernaak (1998).
The extension to roots on the imaginary axis is described in Kwakernaak (2000).

Clements, D. J. (1993), “Rational spectral factorization using state-space methods.” Systems &
Control Letters, vol. 20, pp. 335–343.

Kwakernaak, H. (1998), “Frequency domain solution of the ∞H problem for descriptor systems.”
In Y. Yamamoto and S. Hara, Eds., Learning, Control and Hybrid Systems, Lecture Notes in
Control and Information Sciences, vol. 241, Springer, London, etc.

H. Kwakernaak (2000), “A Descriptor Algorithm for the Spectral Factorization of Polynomial
Matrices.” Third IFAC Symposium on Robust Control System Design ROCOND 2000, Prague,
June 21–23, 2000.

The macro displays error messages in the following situations:

• The input matrix is not a square pencil

• The input matrix is not real

• The input pencil is not para-Hermitian

• An eigenvalue on the imaginary axis cannot be deflated

A warning message is issued if the relative residue exceeds 1e-6. The “relative residue” is the
norm of the juxtaposition of the (1,1) and (1,2) blocks of C divided by the norm of P.

dsshinf ∞H -suboptimal compensators for descriptor systems

gare Solution of generalized algebraic Riccati equations

Algorithm

References

Diagnostics

See also

complete 17

The Polynomial Toolbox for MATLAB

complete

Complete a nonsquare polynomial matrix to a unimodular matrix

[U,V] = complete(Q,[tol])

If Q is a tall polynomial matrix then the command

[U,V] = complete(Q)

produces a unimodular matrix U of the form U = [Q R]. If Q is wide then the unimodular matrix U
has the form U = [Q; R]. V is the inverse of U.

If Q does not have full rank or is not prime then no unimodular matrix U exists and an error mes-
sage follows. Also if Q is square non-unimodular an error is reported.

The optional input argument tol is the tolerance used for the row or column reduction of Q that is
part of the algorithm.

This is a new function in the Polynomial Toolbox.

A tall polynomial matrix Q with column degrees 2 and 1 and dimensions ×3 2 is generated by the
command

Q = prand([2 1],3,2)

Q =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s

Q is completed to a unimodular matrix U by typing

[U,V] = complete(Q);

U

U =

1.6 - 1.1s - 0.026s^2 -1.1 + 0.75s 0.2 + 0.00074s

0.5 - 0.52s - 0.56s^2 -0.75 + 0.93s 0.4 + 0.016s

-0.25 - 0.15s - 1.3s^2 0.31 + 2.7s 1 + 0.036s

It may be verified that U is unimodular and that V is its inverse by successively typing

det(U)

Constant polynomial matrix: 1-by-1

Purpose
Syntax
Description

Compatibility
Example

18 New Functions in Version 2.5 of the Polynomial Toolbox

ans =

-0.73

U*V

Constant polynomial matrix: 3-by-3

ans =

1 0 0

0 1 0

0 0 1

Let Q be a full rank ×n k polynomial matrix, with >n k . We wish to find an × −()n n k poly-
nomial matrix R such that   Q R is unimodular. Let U be a unimodular matrix which reduces Q
to the extended row-reduced form

 
=  
 0
oQUQ

If the ×k k matrix oQ is a constant matrix then it is nonsingular and the desired unimodular
completion exists. Otherwise, the completion does not exist. The row reduction algorithm also
yields the inverse −= 1V U of U. Redefine

−   
= =   
    

1 00: , :
00
oo QQU U V V

II

and partition =   1 2V V V . Then

   
= =   
   

2
0

,
0
I

UQ UV
I

Hence, the desired completion is

  2Q V

and its inverse is U. If Q is not tall but wide then the algorithm is applied to the transpose of Q.

The macro complete issues error messages if

� The input matrix is square non-unimodular

� The input matrix cannot be completed to a unimodular matrix because it is not prime

� The input matrix does not have full rank

colred, rowred Reduction to column or row reduced form

Algorithm

Diagnostics

See also

dssh2 19

The Polynomial Toolbox for MATLAB

dssh2

Descriptor solution of the H2 problem

[Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

The command

 [Ak,Bk,Ck,Dk,Ek] = dssh2(A,B,C,D,E,nmeas,ncon,tol)

solves the H2 optimization problem for the standard plant
−= − +1() ()G s C sE A B D

with nmeas measured outputs and ncon control inputs. The optimal compensator is given by
−= − +1() ()k k k k kK s C sE A B D

The optional parameter tol is a tolerance with default value 1e-10.

Conditions on the input data: If D is partitioned as

 
=  
 

11 12

21 22

D D
D

D D

where 12D has ncon columns and 21D has nmeas rows, then 12D needs to have full column
rank and 21D full row rank, and 22D should be the zero matrix. Use the command dssreg with
the option 'D22' to “regularize” the system if these conditions are not met.

This function is new in the Polynomial Toolbox.

2H design problem

Consider the block diagram of Fig. 1. The plant is a MIMO system with transfer matrix

 
 + =
 
 + 

2
1 1

2
()

1
0

2

ssP s

s

The controlled output is

  
=  
 

11

12

z
z

z

Purpose
Syntax
Description

Compatibility
Example

20 New Functions in Version 2.5 of the Polynomial Toolbox

Fig. 1. Design problem

The measured output

 
=  
 

1

2

y
y

y

is corrupted by colored measurement noise generated by the two shaping filters with transfer func-
tions

+
1

1 /10s
 and

+
1

1 / 20s

The second component of the disturbance

 
=  
 

1

2

v
v

v

is passed through a shaping filter with transfer function 1/ s to ensure integrating action on both
input channels. The input

dssh2 21

The Polynomial Toolbox for MATLAB

 
=  
 

1

2

u
u

u

is weighted with dynamic weighting functions with transfer functions +1(1)c rs (to ensure suffi-
cient high-frequency roll-off of the compensator) and 2c s (both for high-frequency roll-off and to
allow integral control at the second input channel).

The generalized plant that defines the 2H problem is given by

 
 + + 
 
 + + 
 + 

= =   
   

 
 

+ + + 
 
 

+ + +  

2 2

11 12 1

21 22 2

2 2

1 1 1 1
0 0

(2) 2
1 1

0 0 0 0
(2) 2

() () 0 0 0 0 (1) 0
()

() () 0 0 0 0 0
1 1 1 1 1

0
(2) 1 /10 2

1 1 1
0 0 0

(2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s

The transfer matrix may be entered in rational format, converted to a left polynomial matrix frac-
tion by the command rat2lmf and after this converted to descriptor representation by the com-
mand lmf2dss:

c1 = 1; c2 = 1; r = 5;

Num = [1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1];

Den = [s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

22 New Functions in Version 2.5 of the Polynomial Toolbox

1 s*(s+2) 1 1+s/20 1 s+2];

[N,D] = rat2lmf(Num,Den);

[a,b,c,d,e] = lmf2dss(N,D)

a =

Columns 1 through 7

0 1.0000 -1.7638 0 0 0 0

0 0 0 0 0 0 0

0 0 -2.0000 1.0000 0 0 0

0 0 0 0 0 0 0

0 0 0 0 -10.0000 0 0

0 0 -0.0000 0 0 -20.0000 0

0 0 0 0 0 0 1.0000

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1.0000 0 0

0 1.0000 0

0 0 1.0000

b =

0 0 0 0 0 0.3333

0.3333 0.3333 0 0 0.3333 0

dssh2 23

The Polynomial Toolbox for MATLAB

0 0 0 0 0 0.3780

0 0.3780 0 0 0 0

0 0 -0.5754 0 0 0

0 0 0 -0.5769 0 0

0 0 0 0 0 0

0 0 0 0 5.0000 0

0 0 0 0 0 0

0 0 0 0 0 1.0000

c =

Columns 1 through 7

3.0000 0 0 0 0 0 0

0 0 2.6458 0 0 0 0

0 0 0 0 0 0 -1.0000

0 0 0 0 0 0 0

-3.0000 0 0 0 17.3781 0 0

0 0 -2.6458 0 0 34.6699 0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

0 -1.0000 0

0 0 0

0 0 0

d =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

24 New Functions in Version 2.5 of the Polynomial Toolbox

0 0 0 0 0 0

e =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

The descriptor representation does not satisfy the regularity assumptions, This is corrected with the
help of the command

[a1,b1,c1,d1,e1] = dssreg(a,b,c,d,e,2,2,'D22');

Following this the solution of the 2H problem follows by typing

[yd,xd] = dss2rmf(ak,bk,ck,dk,ek);

We suppress the rather copious output. The compensator may be converted to rational form by the
commands

[Y,X] = dss2rmf(ak,bk,ck,dk,ek);
[NumK,DenK] = rmf2rat(Y,X);

The compensator is given by

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058

4.4 13 17 14 5.6 (4.4 13 17 14 5.6)
()

0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s

s s s s s s s s s s s
K s

s s s s s s s s

s s s s s

 
 
 
 

+ 
 + + + + + 

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6)

s s

s s s s s s

The solution is obtained by a mixed state space and polynomial matrix solution (Kwakernaak,
2000).

Algorithm

dssh2 25

The Polynomial Toolbox for MATLAB

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust Control De-
sign,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 21–23 June 2000, Prague,
Czech Republic.

The macro dssh2 issues error messages if

� The input data have inconsistent dimensions

� The matrix D does not satisfy the regularity conditions

� The plant has unstable fixed poles

� The generalized plant has marginally stable fixed poles that cannot be cancelled

� The closed-loop transfer matrix cannot be made strictly proper

dssreg Regularization of a descriptor system

h2 Polynomial solution of the standard 2H problem

gare Solution of Generalized Algebraic Riccati Equations

dsshinf ∞H suboptimal compensator for descriptor systems

mixeds Solution of a SISO ∞H mixed sensitivity problem

plqg Polynomial solution of a MIMO LQG problem

splqg Polynomial solution of a SISO LQG problem

Reference

Diagnostics

See also

26 New Functions in Version 2.5 of the Polynomial Toolbox

dssreg

“Regularization” of a standard descriptor plant

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon[,tol][,option1][,option2])

The commands

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon,tol)

transform the generalized plant

 
= +  

 
   

= +   
   

� w
Ex Ax B

u

z w
Cx D

y u

where the dimension of y is nmeas and the dimension of u is ncon, into an equivalent general-
ized plant

 
= +  

 
   

= +   
   

� w
ex ax b

u

z w
cx d

y u

with

d = [d11 d12

d21 d22]
such that d12 has full column rank and d21 has full row rank. “Equivalent” means that the two
plants have the same transfer matrices.

The optional tolerance parameter tol is used in the various rank tests. It has the default value
1e-12.

Two options may be included. The option 'D11' modifies the representation so that the term with
d11 is absent. The option 'D22' removes the term with d22.

In verbose mode the routine displays a relative error based on the largest of the differences of the
frequency response matrices of the transformed and the original plant at the frequencies 1, 2, ...,
10.

Purpose
Syntax

Description

dssreg 27

The Polynomial Toolbox for MATLAB

This version of dssreg is backward compatible with the version of Version 2.0 of the Toolbox.
The only difference is that the options 'D11' and D22' have been added.

In the Example section of the manual page for the Polynomial Toolbox command dsshinf the
descriptor representation of a generalized plant is derived. When considering the subsystem

= +2 (1)z c rs u
two pseudo state variables are defined as = = �3 4,x u x u , which leads to the descriptor equa-
tions

=
= − +

�3 4

30

x x

x u

The output equation is rendered as

= + = +2 4(1)z c rs u crx cu
The output equation, however, equally well could be chosen as

= + = +2 3 4(1)z c rs u cx crx
This brings the generalized plant in the form

       
                = +                  

−                

�
�
�
�

���	��
 ���	��
 ��	�

1 1

2 2

3 3

4 4

1 0 0 0 0 1 0 0 2 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1

x x

x x w
x x u
x x

E A B

 
              = +               − −        ����	���
 ��	�

1
1

2
2

3

4

1 0 0 0 1 0
0 0 0 0
1 0 0 0 1 0

x
z

x w
z c cr

x u
y

x
DC

For this plant we have

 
= = − 
 

12 21
0

, 1
0

D D

so that 12D does not have full rank. We apply dssreg to this plant for c = 0.1, r = 0.1.

c = 0.1; r = 0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

Compatibility

Examples

28 New Functions in Version 2.5 of the Polynomial Toolbox

A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 c c*r; -1 0 0 0];

D = [1 0; 0 0; -1 0];

ncon = 1; nmeas = 1;

We now apply dssreg.

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

a =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 -1 0

b =

1.4142 0

1.0000 1.0000

0 1.0000

0 1.0000

c =

1.0000 0 0 0

0 0 0.1000 0.0100

-1.0000 0 0 0

d =

1.0000 0

0 0.0100

-1.0000 0

e =

1 0 0 0

0 1 0 0

0 0 1 0

dssreg 29

The Polynomial Toolbox for MATLAB

0 0 0 0

We now have

 
= = − 
 

12 21
0

, 1
1

D D

so that the transformed plant is “regular.”

As a second example we consider the standard plant

 
= +     

 
   

=   
   

� 1 1

1
1

w
x x

u

z
x

y

for which neither 12D nor 21D has full rank. We obtain the following result.

E = 1; A = 1; B = [1 1]; C = [1; 1]; D = [0 0;0 0];

nmeas = 1; ncon = 1;

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

a =

1 0 0

0 1 0

0 0 1

b =

1 1

0 1

1 0

c =

1 1 0

1 0 1

d =

0 1

1 0

e =

30 New Functions in Version 2.5 of the Polynomial Toolbox

1 0 0

0 0 0

0 0 0

Instead of a state representation of dimension 1 we now have a 3-dimensional descriptor represen-
tation, which, however, is “regular.”

Finally, consider the system

= + = =� , ,x u v z v y u
Accordingly, we let

» E

E =

1

» A

A =

0

» B

B =

1 1

» C

C =

0

0

» D

D =

1 0

0 1

We successively have

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1); length(a),d

ans =

3

dssreg 31

The Polynomial Toolbox for MATLAB

d =

1 1

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11'); length(a),d

ans =

4

d =

0 1

1 1

» [a,b,c,d,e] = dssreg(A,B,C,D,E,1,1,'D11','D22'); length(a),d

ans =

5

d =

0 1

1 0

First consider the case that 21D does not have full row rank.

Let the rows of the matrix N span the left null space of E, so that NE = 0. Then by multiplying the
descriptor equation = + +� 1 2Ex Ax B w B u on the left by N we obtain the set of algebraic equa-
tions = + +1 20 NAx NB w NB u . By adding suitable linear combinations of the rows of this set of
equations to the rows of the output equation = + +2 21 22y C x D w D u the rank of 21D may be
increased without increasing the dimension of the pseudo state x.

If after this operation 21D still does not have full row rank then we apply a suitable transforma-
tion to the output equation = + +2 21 22y C x D w D u so that it takes the form

      
= = + +      

      
1 21 221211

2 22 2220

y C DD
y x w u

y C D

where 211D has full row rank. It is easy to construct a matrix 212D so that

 
 
 

211

212

D

D

has full row rank. Following this we redefine the output equation as

Algorithm

32 New Functions in Version 2.5 of the Polynomial Toolbox

         ′= = + + +        
        

1 21 211 221

2 22 212 222

0y C D D
y x x w u

y C D DI

where ′x is an additional component of the pseudo state. This component is accounted for by
adding the algebraic equation

′= + 2120 x D w
to the descriptor equation. This increases the dimension of the pseudo state, of course.

If 12D does not have full rank then the procedure as described is applied to the “dual” system.

If, say, 22D is nonzero then we use singular value decomposition to write =22D USV , where S
is square nonsingular. Adding the equation ′ =x SVu to the descriptor equations we may now
rewrite the equation for y as

′= + + = + +1 21 22 1 21y C x D v D u C x Ux D v
If needed, 11D is similarly removed.

The macro dssreg displays error messages in the following situations.

• The input parameters have inconsistent dimensions.

• 12D is not tall or 21D is not wide.

• The relative error exceeds 1e-6. The relative error is computed on the basis of the largest of
the differences of the frequency responses of the system before and after regularization at the
frequencies 1, 2, …, 10.

In verbose mode the relative error is always reported.

dssrch ∞H optimization for a descriptor plant

dssmin dimension reduction of a descriptor system

dssh2 2H optimization of a descriptor system

Diagnostics

See also

gare 33

The Polynomial Toolbox for MATLAB

gare

Generalized algebraic Riccati equation

[X,F] = gare(A,B,C,D,E,Q,R,tol);

This routine computes the solution X of the generalized algebraic Riccati equation
−+ + − + + =

=

1() () 0T T T T T T T

T T

X A A X C QC X B C D R B X D C

X E E X

and the gain
−= +1()T TF R B X D C

such that the feedback law = −u Fx stabilizes the descriptor system

= +�Ex Ax Bu
and makes the impulsive modes non-impulsive. Finite closed-loop poles on the imaginary axis are
allowed. If the descriptor system is not stabilizable or impulse controllable then X is returned as a
matrix filled with Infs. In this case F still has a well-defined solution. The corresponding feed-
back law stabilizes the stabilizable modes and makes the controllable impulsive modes non-
impulsive.

The optional tolerance tol is used by the routine clements and also to test whether the GARE
has a finite solution. Its default value is 1e-12.

This function is new in the Polynomial Toolbox.

Let

     
= = =     
     

= =  

1 0 1 0 1
, ,

0 1 0 2 0

2 1 , 1

E A B

C D

= 1Q , = 1R . The system has an uncontrollable mode with eigenvalue 2. Accordingly, we obtain

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

Inf Inf

Inf Inf

F =

2 0

Purpose
Syntax
Description

Compatibility
Example

34 New Functions in Version 2.5 of the Polynomial Toolbox

» roots(s*E-A+B*F)

ans =

2.0000

-1.0000

On the other hand,

     
= = =     −     

= =  

1 0 0 1 0
, ,

0 0 1 0 1

0 1 , 1

E A B

C D

is controllable. We now have

» [X,F] = gare(A,B,C,D,E,Q,R)

X =

1.0e-015 *

0 0

-0.0754 -0.1601

F =

-0.0000 1.0000

» roots(s*E-A+B*F)

ans =

-1.0000

The algorithm for the solution of the GARE relies on transforming the associated Hamiltonian
pencil to Clements form (Kwakernaak, 2000).

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust Control De-
sign,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 21–23 June 2000, Prague,
Czech Republic.

The macro gare issues error messages if the input data have inconsistent dimensions.

clements Clements transformation of a matrix pencil

Algorithm

Reference

Diagnostics
See also

h2 35

The Polynomial Toolbox for MATLAB

h2

H2-optimization

[Y,X,clpoles,fixed] = H2(N,D,nmeas,ncon[,tol][,’check’])

Given a continuous-time generalized plant of the form

    
=     

    ���	��

11 12

21 22

G Gz w

G Gy u

G

with G represented in the left coprime polynomial matrix fraction form −= 1G D N , the com-
mand

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas)

computes the compensator =u Ky in right polynomial matrix fraction form −= 1K YX that
minimizes the 2-norm 2H of the closed-loop transfer matrix

−= + − 1
11 12 22 21()H G G I KG KG

from v to z. The norm is defined by

ω ω ω
π

∞

−∞

= −∫2
2

1
tr () ()

2
TH H j H j d

Fig. 2 . Generalized plant

The input parameter ncon is the number of control inputs and nmeas is the number of measured
outputs. The output parameter clpoles contains the (non-fixed) closed-loop poles and fixed
the fixed-plant poles.

In the optional forms

Purpose
Syntax
Description

36 New Functions in Version 2.5 of the Polynomial Toolbox

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol)

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,'check')

[Y,X,clpoles,fixed] = H2(N,D,ncon,nmeas,tol,'check')

the parameter tol is a tolerance. Its default value is 1e-8. If the option 'check' is present then
the routine checks whether the 2H optimization problem has a solution, and exits if no solution
exists. If the option is not invoked then the routine produces a solution even if none exists. In the
latter case the closed-loop transfer matrix either has poles on the imaginary axis or is not strictly
proper.

Nonproper generalized plants are allowed. Fixed open-loop poles (that is, uncontrollable or unob-
servable poles) cannot have strictly positive real parts but may be located on the imaginary axis.

This function is new in the Polynomial Toolbox.

Example 1: 2H design problem

Consider the block diagram of Fig. 1. The plant is a MIMO system with transfer matrix

Fig. 3. Design problem

Compatibility
Examples

h2 37

The Polynomial Toolbox for MATLAB

 
 + =
 
 + 

2
1 1

2
()

1
0

2

ssP s

s

The controlled output is

  
=  
 

11

12

z
z

z

The measured output

 
=  
 

1

2

y
y

y

is corrupted by colored measurement noise generated by the two shaping filters with transfer func-
tions

+
1

1 /10s
 and

+
1

1 / 20s

The second component of the disturbance

 
=  
 

1

2

v
v

v

is passed through a shaping filter with transfer function 1/ s to ensure integrating action on both
input channels. The input

 
=  
 

1

2

u
u

u

is weighted with dynamic weighting functions with transfer functions +1(1)c rs (to ensure suffi-
cient high-frequency roll-off of the compensator) and 2c s (both for high-frequency roll-off and to
allow integral control at the second input channel).

The generalized plant that defines the 2H problem is given by

38 New Functions in Version 2.5 of the Polynomial Toolbox

 
 + + 
 
 + + 
 + 

= =   
   

 
 

+ + + 
 
 

+ + +  

2 2

11 12 1

21 22 2

2 2

1 1 1 1
0 0

(2) 2
1 1

0 0 0 0
(2) 2

() () 0 0 0 0 (1) 0
()

() () 0 0 0 0 0
1 1 1 1 1

0
(2) 1 /10 2

1 1 1
0 0 0

(2) 1 / 20 2

s s ss s

s s s
G s G s c rs

G s
G s G s c s

s s s ss s

s s s s

The transfer matrix may be entered in rational format and then converted to a left polynomial ma-
trix fraction by the command rat2lmf:

c1 = 1; c2 = 1; r = 5;

Num = [1 1 0 0 1 1

0 1 0 0 0 1

0 0 0 0 c1*(1+r*s) 0

0 0 0 0 0 c2*s

-1 -1 -1 0 -1 -1

0 -1 0 -1 0 -1];

Den = [s^2 s*(s+2) 1 1 s^2 s+2

1 s*(s+2) 1 1 1 s+2

1 1 1 1 1 1

1 1 1 1 1 1

s^2 s*(s+2) 1+s/10 1 s^2 s+2

1 s*(s+2) 1 1+s/20 1 s+2];

[N,D] = rat2lmf(Num,Den)

N =

0 0 0 0 0.2 + s 0

0 0 0 0 0 s

1 20 + s 0 0 0 20 + s

The solution of the 2H problem follows by typing

h2 39

The Polynomial Toolbox for MATLAB

[Y,X,clpoles,fixedpoles] = H2(N,D,2,2)

Y =

0.044 + 0.25s + 0.023s^2 0.014 + 0.042s + 0.0022s^2

0.54 + 0.4s + 0.04s^2 -0.3 - 0.15s - 0.0065s^2

X =

0.41 + s + 0.76s^2 + 0.27s^3 0.13 - 0.12s - 0.064s^2

-0.21 + 0.16s + 0.09s^2 - 0.27s^3 -0.065 - 0.83s - s^2 - 0.38s^3

clpoles =

-1.8586

-1.8477

-0.7541 + 0.6556i

-0.7541 - 0.6556i

-0.2991 + 0.4534i

-0.2991 - 0.4534i

-0.8073

-0.5388

-0.4545

fixedpoles =

0

-20.0000

-10.0000

The compensator may be converted to rational form by the command

[NumK,DenK] = rmf2rat(Y,X)

The compensator is given by

+ + + + − − − − −
+ + + + + + + + + +

=
+ + + + + + + + +

+ + + + +

2 3 4 2 3 4

2 3 4 5 2 3 4 5

2 3 4 5 2 3

2 3 4 5

0.45 2.6 2.8 1.1 0.08 0.033 0.81 0.56 0.14 0.0058

4.4 13 17 14 5.6 (4.4 13 17 14 5.6)
()

0.94 4.4 8 6.9 2.3 0.17 1.9 3.4 3 1.7

4.4 13 17 14 5.6

s s s s s s s s

s s s s s s s s s s s
K s

s s s s s s s s

s s s s s

 
 
 
 

+ 
 + + + + + 

4 5

2 3 4 5
0.42 0.017

(4.4 13 17 14 5.6)

s s

s s s s s s

40 New Functions in Version 2.5 of the Polynomial Toolbox

Inspection shows that integrating action is included in the second input channel as intended.

Example 2: Wiener filtering problem

Wiener filtering problems may be defined as follows. A message signal x is given by

= 1()x H s v
where v is a standard white noise process. The observed signal y is related to the message process
by

= 2()y H s v

1H and 2H are stable rational transfer matrices. It is desired to estimate the message signal x by
filtering the observed signal y.

Fig. 4. Wiener filter configuration

Fig. 4 shows the system configuration. Inspection shows that the generalized plant that defines the
2H -problem is given by

−    
=     

    ��	�

1

2 0

G

H Iz v

Hy u

By way of example, suppose that x and y are related as

= +y x n
where the observation noise n is independent of the message signal x. The message signal is gen-
erated by the shaping filter

=
+

12
1

(1)
x v

s

with 1v white noise, and the noise is given by

ω σ
ζω ω

=
+ +

2

22 22
o

o o

n v
s s

h2 41

The Polynomial Toolbox for MATLAB

where the white noise 2v is independent of 1v . We let ω = 1o , ζ = 0.01 and σ = 0.1 so that the
measurement noise is not very large but has a relatively sharp peak at the cut-off frequency of the
message signal. This defines

ω σ
ζω ω

 
=  

+  
 

=  
+ + +  

1 2

2

2 2 2 2

1
() 0

(1)

1
()

(1) 2
o

o o

H s
s

H s
s s s

so that

ω σ
ζω ω

 − + 
=  
 
 + + + 

2

2

2 2 2

1
0 1

(1)
()

1
0

(1) 2
o

o o

s
G s

s s s

The following commands solve this problem:

d1 = (s+1)^2; n1 = 1;

omo = 1; zeta = 0.01; sigma = 0.1;

d2 = s^2+2*zeta*omo*s+omo^2; n2 = omo^2*sigma;

Num = [1 0 -1

1 n2 0];

Den = [d1 1 1

d1 d2 1];

[N,D] = rat2lmf(Num,Den);

[Y,X,clpoles] = H2(N,D,1,1)

The solution is returned as

Y =

0.91 + 0.018s + 0.91s^2

X =

1 + 0.2s + s^2

clpoles =

-0.1000 + 0.9950i

42 New Functions in Version 2.5 of the Polynomial Toolbox

-0.1000 - 0.9950i

The command

bode(pol2mat(Y),pol2mat(X))

produces the Bode plot of the filter of Fig. 5. The filter is a notch filter that removes the colored
measurement noise as best as it can.

Fig. 5. Bode diagram of the Wiener filter

The solution is obtained by Wiener-Hopf optimization (Kwakernaak, 2000).

Kwakernaak, H. (2000), “ 2H -Optimization — Theory and Applications to Robust Control De-
sign,” Plenary paper, IFAC Symposium on Robust Control Design 2000, 21–23 June 2000, Prague,
Czech Republic.

The macro h2 issues error messages if

� 12G does not have full column rank or 21G does not have full row rank

� The generalized plant has unstable fixed poles

If the option ‘check’ is activated then error messages are issued if

� The plant has fixed poles on the imaginary axis that cannot be canceled

� The closed-loop system transfer matrix cannot be made strictly proper

Algorithm
Reference

Diagnostics

h2 43

The Polynomial Toolbox for MATLAB

Warning messages are issued if

� 21N or 12N have zeros on the imaginary axis

� The closed-loop system has one or more poles on the imaginary axis

The polynomial matrices 21N and 12N occur in the left en right coprime fractional representa-
tions

− −  
= =         

   

121 112
21 22 22 21 22 22

22 22
,

G N
G G D N N D

G N

If these polynomial matrices have roots on the imaginary axis then the two spectral factorizations
will also involve roots on the imaginary axis, which may make the factorizations fail.

dsshinf ∞H suboptimal compensator for descriptor systems

mixeds Solution of a SISO ∞H mixed sensitivity problem

plqg Polynomial solution of a MIMO LQG problem

splqg Polynomial solution of a SISO LQG problem

See also

44 New Functions in Version 2.5 of the Polynomial Toolbox

jury

Create the Jury matrix corresponding to a polynomial

J = jury(p,k)

J = jury(p,k,'rev')

The command

J = jury(p,k))

creates the constant Jury matrix J of dimension − × −(1) (1)k k corresponding to the polynomial
p. If

= + + +"0 1() d
dp v p p v p v

and ≤k d then

− −

−

− − −

− −

   
   
   
   = −
   
   
      

" "
" "

#
"
"

1 2 3 2 0

1 4 3 0 1

1 0 1 4 3

0 1 2 3 2

0 0 0 0
0 0 0 0

()

0 0 0 0 0
0 0 0 0 0

k k k

k k

k k k k

k k k

p p p p p p

p p p p p p

J p

p p p p p p

p p p p p p

The default value of k is d.

 With the syntax

J = jury(p,k,'rev')

the coefficients …0 1, , , kp p p are reversed.

The Jury matrix is quite useful when analysing the robust stability of discrete-time systems by
polynomial methods. In the Polynomial Toolbox the function is called by the function stabint
when computing stability interval.

This function is new in the Polynomial Toolbox.

The Jury matrix of the polynomial

P = 1+z+2*z^2+3*z^3+4*z^4+5*z^5

p =

1 + z + 2z^2 + 3z^3 + 4z^4 + 5z^5

simply is

J = jury(p)

Purpose
Syntax

Description

Compatibility
Examples

jury 45

The Polynomial Toolbox for MATLAB

J =

5 4 3 1

0 5 3 2

0 -1 4 2

-1 -1 -2 2

A version of reduced size is obtained by typing

J4 = jury(p,4)

J4 =

4 3 1

0 3 2

-1 -1 2

The macro uses standard MATLAB operations.

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company. New
York, 1994.

The function displays no error messages.

hurwitz Hurwitz matrix for a polynomial

stabint robust stability interval

Algorithm
References

Diagnostics

See also

46 New Functions in Version 2.5 of the Polynomial Toolbox

pdisp

Display a polynomial or polynomial matrix without its name

pdisp(M)

The command

pdisp(M)

displays the polynomial matrix M without printing the name.

Typing

M = [s+1 s^2+s]

M =

1 + s s + s^2

displays the matrix M including its name. The name is suppressed by typing

pdisp(M)

 1 + s s + s^2

This command is new in the Polynomial Toolbox.

The macro uses standard MATLAB commands.

Purpose
Syntax
Description

Example

Compatibility
Algorithm

pformat rootr, pformat rootc 47

The Polynomial Toolbox for MATLAB

pformat rootr, pformat rootc

Format a polynomial or polynomial entry

pformat rootr

pformat rootc

The Polynomial Toolbox can display polynomial matrices in various formats under the control of
the command pformat. In addition to the formats available in Version 2.0 (see the Manual for
details) two more options were included in Version 2.5 that allow to display polynomials in terms
of their roots.

By specifying the format rootr a polynomial with real coefficients is expressed as a product of
first and second order factors. Every real root results in real factor of degree 1 while a pair of com-
plex conjugate roots results in a real factor of degree 2.

The other new display format rootc returns a product of factors of degree 1 only. A pair of com-
plex conjugate roots now results in a pair of first degree factors with complex coefficients.

For polynomials with complex coefficients the two new formats display identical results with
factors of degree 1 only.

For polynomial matrices the formats apply to each of the entries.

In Version 2.0 use of the options results in an error message.

By way of example, create a simple polynomial

P = (s-1)*(s+2)*(s+3*i)*(s-3*i);

In the default display format symbs the polynomial is displayed as

p

p =

-18 + 9s + 7s^2 + s^3 + s^4

Changing the display format to rootr results in

pformat rootr

p

p =

(s+2.0000)(s^2+9.0000)(s-1)

The other new display format rootc returns a product of factors of degree 1 only. A pair of com-
plex conjugate roots now results in a pair of first degree factors with complex coefficients:

Purpose
Syntax

Description

Compatibility
Examples

48 New Functions in Version 2.5 of the Polynomial Toolbox

pformat rootc

p

p =

(s+2.0000)(s+3.0000i)(s-3.0000i)(s-1)

To view the effect on polynomial matrices consider

pformat rootr

[s^2+2*s+1 s+s^2]

ans =

(s+1)(s+1) s(s+1)

The routine uses standard MATLAB operations.

pformat Control the display format of polynomials and polynomial matrices

Algorithm

See also

pol2tex 49

The Polynomial Toolbox for MATLAB

pol2tex

Conversion of a polynomial object into LaTeX code

Tex_str = pol2tex(A1,A2,…,AN)

Tex_str = pol2tex(A1,A2,…,AN,’File_name’)

The command

Tex_str = pol2tex(A1,A2,…,AN)

converts the polynomial matrices or standard MATLAB matrices A1,A2,…,AN into a string
Tex_str in LaTeX code to be used in LaTeX source files. LaTeX is a well-known document
preparation system that is especially effective for text containing many mathematical formulas
including matrices [1]. The output string comprises a sequence of LaTeX commands to create an
array surrounded by bracket delimiters in display mathematical mode. The user is expected to copy
this string to a LaTeX source file.

Alternatively, the command

Tex_str = pol2tex(A1,A2,…,AN,’File_name’)

appends Tex_str to the existing file File_name.tex. If the file does not exist then the out-
put string is saved in a newly created TEX file. This file, however, does not contain any LaTeX
preamble and hence cannot be compiled by LaTeX as it is. Instead, it can be related to another
TEX file using LaTeX command input or the include statement.

The macro allows any number of input arguments. The resulting format is given by the currently
active display format, which is controlled by the functions pformat and format.

This function is new in the Polynomial Toolbox.

The following examples illustrate how the command should be used.

Example 1

Consider a polynomial matrix C given by
» C=[-8+s 1-6*s 6+6*s; 0 2 1; -1+4*s-3*s^2 2.1e-5 11-s]
C =

-8 + s 1 - 6s 6 + 6s

0 2 1

-1 + 4s - 3s^2 2.1e-005 11 – s
which should be included in a LaTeX based document. Calling pol2tex creates the string

» pol2tex(C)

Purpose
Syntax

Description

Compatibility
Examples

50 New Functions in Version 2.5 of the Polynomial Toolbox

ans =

$$

C=

\left[\begin{array}{lll}

-8+s & \;\;\;1-6s & \;\;\;6+6s \\

\;\;\;0 & \;\;\;2 & \;\;\;1 \\

-1+4s-3s^{2} & \;\;\;2.1*10^{-5} & \;\;\;11-s

\end{array} \right]

$$
This string may be further edited if necessary. If the string is copied into an existing LaTeX file
and compiled by LaTeX then one gets the fairly nice result

2 5

8 1 6 6 6

0 2 1

1 4 3 2.1 10 11

s s s

C

s s s−

 − + − + 
 
 =  
 − + − × −  

Example 2

As another example consider a constant matrix B

B =

0.2200 -0.3333 0.1222 4.0000

-0.6364 8.0000 0.0927 0.4000

and change the format to rational

» format rat

» B

B =

11/50 -1/3 11/90 4

-7/11 8 29/313 2/5

Then

» pol2tex(B)

ans =

$$

pol2tex 51

The Polynomial Toolbox for MATLAB

B=

\left[\begin{array}{llll}

\;\;\; \frac{11}{50} & -\frac{1}{3} & \;\;\; \frac{11}{90} &
\;\;\; 4 \\ \\

-\frac{7}{11} & \;\;\; 8 & \;\;\; \frac{29}{313} & \;\;\;
\frac{2}{5}

\end{array} \right]

$$

LaTeX returns this as

The macro uses standard MATLAB 5 operations.

The macro displays error messages if

� There are not enough input arguments.

� The class of the input argument is inappropriate.

Leslie Lamport, LaTeX: A Document Preparation System. Addison-Wesley, Reading, Massachu-
setts, 1994.

char Convert a polynomial object to a string

pformat Set the output format for a polynomial object

Algorithm
Diagnostics

References

See also

52 New Functions in Version 2.5 of the Polynomial Toolbox

psseig

Polynomial approach to eigenstructure assignment for a state-space system
L = psseig(F,G,P[,TOL])

Given a linear system

= +�x Fx Gu
where F is an ×n n constant matrix and G is an ×n m constant matrix, and

a set of polynomials { }= ≤…1 2(), (), , () ,rP p s p s p s r m , the command

L = psseig(F,G,P)

returns, if possible, a constant matrix L such that the closed-loop matrix of the controlled system

= −� ()x F GL x
has invariant polynomials …1 2(), (), , ()nq s q s q s , where

+

=
=

=
= = =

#

"

1 1 2

2 2 3

1

() () ()

() () (),

() (),

() () 1
r r

r n

q s p s q s

q s p s q s

q s p s

q s q s

Such a matrix exists if and only if the fundamental degree inequality

+ + ≥ + +" "1 2 1 2deg deg deg k kq q q c c c
holds for all = …1,2, ,k r , where ≥ ≥ ≥"1 2 rc c c are the controllability indices of the pair (F,G).
Moreover, equality must hold for k = r. If the input polynomials P do not satisfy these conditions
then the macro issues an error message.

A tolerance TOL may be specified as an additional input argument. Its default value is the global
zeroing tolerance.

This function is new in the Polynomial Toolbox.

The dynamics of an inverted pendulum linearized about the equilibrium position are described by
the equation

= +�x Fx Gu
where

Purpose
Syntax
Description

Compatibility
Examples

psseig 53

The Polynomial Toolbox for MATLAB

   
   −   = =
   
   
−      

0 1 0 0 0
10.7800 0 0 0 0.2000

,
0 0 0 1 0

0.9800 0 0 0 0.2000

F G

The desired closed-loop poles are selected as
− ±
− ±
1

2 2

j

j

This yields the invariant polynomial

ψ = + + + +4 3 2
1() 6 18 24 16s s s s s

Since = 1m , one has

ψ ψ ψ= = =2 3 4() () () 1.s s s
We aim to find a feedback gain matrix L so that the state feedback law = −u Lx assigns these
invariant polynomials to the closed loop system matrix −F GL . The corresponding code is as
follows:

F=[0,1,0,0;10.78,0,0,0;0,0,0,1;-0.98,0,0,0]

F =

0 1.0000 0 0

10.7800 0 0 0

0 0 0 1.0000

-0.9800 0 0 0

G=[0;-0.2000;0;0.2000]

G =

0

-0.2000

0

0.2000

P = s^4 + 6*s^3 + 18*s^2 + 24*s + 16;

L=psseig(F,G,P)

Constant polynomial matrix: 1-by-4

L =

54 New Functions in Version 2.5 of the Polynomial Toolbox

-1.5e+002 -42 -8.2 -12

det(s*eye(4)-F+G*L)-P

Zero polynomial matrix: 1-by-1, degree: -Inf

ans =

0

The algorithm is fully described in reference [1]. It may be summarized as follows:

1. A coprime matrix polynomial fraction description (), ()r rA s B s is computed for the system
with the macro ss2rmf.

2. The controllability indices (the column degrees of ()rA s) are sorted and the fundamental
degree condition for invariant polynomials assignment is checked.

3. A polynomial matrix ()rC s featuring the controllability indices and the desired invariant
polynomial factors is built.

4. The Diophantine equation + =() () () () ()L r l r rX s A s Y s B s C s is solved for a constant solu-
tion ,L lX Y with the macro xaybc.

5. The constant feedback matrix −= 1
L lL X Y $ is constructed.

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback Control.” Pro-
ceedings of the IEEE International Symposium on Computed-Aided Control System Design, IEEE,
pp. 380–385, Kohala Coast, Hawaii, August 1999.

The macro produces error messages if

• the input matrices have incompatible dimensions

• there is an incorrect number of invariant polynomials

• some invariant polynomial is zero

• the fundamental degree condition is not satisfied

psslqr Polynomial approach to linear-quadratic regulator design for state-space sys-
tems

Algorithm

References

Diagnostics

See also

psslqr 55

The Polynomial Toolbox for MATLAB

psslqr

Polynomial approach to linear-quadratic regulator design for state-space systems
L = psslqr(F,G,H,J[,TOL])

Given a linear system

= +�x Fx Gu
where F is an ×n n constant matrix and G is an ×n m constant matrix, and a regulated variable

= +z Hx Ju
where H is a ×p n constant matrix and J is a ×p m constant matrix, the command

L = psslqr(F, G, H, J)

returns a constant matrix L such that the control function = −u Lx minimizes the 2L -norm of z
for every initial state x(0).

It is assumed that

= =0,T TJ H J J I
A tolerance TOL may be specified as an additional input argument. Its default value is the global
zeroing tolerance.

This function is new in the Polynomial Toolbox.

The linearized model of the vertical-plane dynamics of an AIRC aircraft is described by the equa-
tions

= +
= +
� L

L

x Fx G v

y Hx J v

where

 
 
 
 =
 
 
  

0 0 1.1320 0 -1
0 -0.0538 -0.1712 0 0.0705

,0 0 0 1 0

0 0.0485 0 -0.8556 -1.013
0 -0.2909 0 1.0532 -0.6859

F

 
 =  
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

H

Purpose
Syntax
Description

Compatibility
Examples

56 New Functions in Version 2.5 of the Polynomial Toolbox

We want to design a linear Gaussian filter for the covariance matrices given by

 
 
 
 =
 
 
  
 
 =  
  

0 0 0 0 0 0
-0.1200 1 0 0 0 0

,0 0 0 0 0 0
4.4190 0 -1.6650 0 0 0
1.5750 0 -0.0732 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

L

L

G

J

The corresponding code is as follows:

F = [0,0,1.1320,0,-1;0,-0.0538,-.1712,0,0.0705;0,0,0,1,0;
0,0.0485,0,-0.8556,-1.0130;0,-0.2909,0,1.0532,-0.6859]

F =

0 0 1.1320 0 -1.0000

0 -0.0538 -0.1712 0 0.0705

0 0 0 1.0000 0

0 0.0485 0 -0.8556 -1.0130

0 -0.2909 0 1.0532 -0.6859

H = [1,0,0,0,0;0,1,0,0,0;0,0,1,0,0]

H =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

GL = [0,0,0,0,0,0;-
0.12,1,0,0,0,0;0,0,0,0,0,0;4.4190,0,1.665,0,0,0;

1.575,0,-0.0732,0,0,0]

GL =

0 0 0 0 0 0

-0.1200 1.0000 0 0 0 0

0 0 0 0 0 0

psslqr 57

The Polynomial Toolbox for MATLAB

4.4190 0 1.6650 0 0 0

1.5750 0 -0.0732 0 0 0

JL = [0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1]

JL =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

L = psslqr(F',H',GL',JL')

Constant polynomial matrix: 3-by-5

L =

1 0.066 -0.21 -0.45 -0.81

0.066 0.94 -0.069 -0.053 -0.25

-0.21 -0.069 1.8 1.6 2.2

The algorithm is fully described in reference [1]. It may be summarized as follows:

1. A coprime matrix polynomial fraction description (), ()r rA s B s is computed for the system
with the macro ss2rmf.

2. A polynomial matrix ()rC s with 2L -optimal eigenstructure is computed with the spectral
factorization macro spf.

3. The Diophantine equation + =() () () () ()L r l r rX s A s Y s B s C s is solved for a constant solu-
tion ,L lX Y with the macro xaybc.

4. The constant feedback −= 1
L lL X Y is constructed.

[1] V. Kucera, M. Sebek, D. Henrion: “Polynomial Toolbox and State Feedback Control.” Pro-
ceedings of the IEEE International Symposium on Computed-Aided Control System Design, IEEE,
pp. 380–385, Kohala Coast, Hawaii, August 1999.

The macro produces error messages if

• the input matrices have incompatible dimensions

• the orthogonality condition on covariance matrices does not hold

psseig Polynomial approach to eigenstructure assignment for state-space system

Algorithm

Reference

Diagnostics

See also

58 New Functions in Version 2.5 of the Polynomial Toolbox

sarea, sareaplot

Robust stability area for polynomials with parametric uncertainties

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new'])

The command

S = sarea(q1,…,qm,ExpressionString,p0,p1,…,pn[,tol])

investigates the robust stability of a family of polynomials depending on m uncertain parameters.
By gridding the parameter space the family is split into a number of standard polynomials that are
separately checked for stability. The m-dimensional grid is defined by the vectors of parameter
values …1, , mq q , and the results are stored in an m-dimensional array S structured accordingly.
As expected, in S 1s stand for “stable” and 0s for “unstable.”

For details on checking the stability of a single polynomial please read the description of macro
isstable. The parameters …0 , , np p are given fixed polynomials that serve to define the
uncertainty structure. Note that the input arguments representing both the parameters and the fixed
polynomials must be written using their names (rather than values) in the function call.

The uncertainty structure of the polynomial family is defined by the string variable Expres-
sionString. This string may contain any MATLAB-like expression composed of the parameter
names (acting here as scalars) and of the names of the fixed polynomials.

The procedure is better explained in the examples below. For three or more uncertain parameters
dense gridding may result in slow performance. Typing

verbose yes

before the run activates an on-line info on the macro performance.

Once the array S is available, it may be plotted by typing one of
sareaplot(q1,S,[,PlotType][,'new'])

sareaplot(q1,q2,S,[,PlotType][,'new'])

sareaplot(q1,q2,q3,S,[,PlotType][,'new'])

for the case of one, two or three parameters, respectively. As before the parameters 1 2 3, ,q q q
must be typed by names and not by values. The optional argument PlotType specifies the type
of plot. It may be a surface plot (default or PlotType='surf'), a point plot (Plot-
Type='points'), or a combination of the two (PlotType='both'). The surface plot is

Purpose
Syntax

Description

sarea, sareaplot 59

The Polynomial Toolbox for MATLAB

usually nicer but may miss some details, while the point plot is always complete. With the input
string argument 'new' the plot is displayed in a new window.

These functions are new in the Polynomial Toolbox.

The following examples illustrate how the command should be used.

Example 1

Consider an uncertain polynomial

= + + +1 2 0 1 2 1 2 2(, ,) () () () ()p s q q p s q q p s q p s

composed of three fixed polynomials

= + + +

= − +

= +

2 3
0

2
1

4
2

4 8 5

1

p s s s

p s s

p s s

and two real parameters ∈ −  1 6,12q and ∈ −  2 5,15q . Suppose you want to check which
values of 1q and 2q give rise to a stable 1 2(, ,)p s q q . As there are two parameters and the uncer-
tainty structure is quite complicated there is hardly any theoretical method known to help. Never-
theless, simple gridding can do the job in a reasonable time.

To start, insert the data
p0 = 4+8*s+5*s^2+s^3; p1=1-s+s^2; p2=s+s^4;

and choose an appropriate grid, such as
q1 = -6:.1:12; q2=-5:.1:15;

Then construct the stability area array by typing

S = sarea(q1,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2);

and plot it with the help of

sareaplot(q1,q2,S)

What you get is the really nice picture displayed in Fig. 1. It shows which combinations of
parameter values yield a stable polynomial.

It is a must here to use names rather than values as the input arguments for both the parameters and
the polynomials. Violation of this rule causes an error message:

S=sarea(-6:.1:12,q2,'p0+(q1+q2)*p1+sqrt(abs(q2))*p2',p0,p1,p2);

??? Error using ==> sarea

Compatibility
Examples

60 New Functions in Version 2.5 of the Polynomial Toolbox

The input argument of parameter vector or polynomial must be a
named variable.

Fig. 6. Stability area of Example 1

Example 2

For the same three fixed polynomials, but a different uncertainty structure

= + + 3
1 2 0 1 2 1 2 1(, ,) () () ()p s p s p s p sλ λ λ λ λ

and parameters λ ∈ −  1 20,20 and λ ∈ −  2 10,10 , we may use the grid

lambda1 = -20:.1:20; lambda2 = -10:.1:10;

and type

expr = 'p0+lambda1*lambda2*p1+lambda2^3*p1';

S2 = sarea(lambda1,lambda2,expr,p0,p1,p2);

sareaplot(lambda1,lambda2,S2)

This results in the amusing picture shown in Fig. 7.

sarea, sareaplot 61

The Polynomial Toolbox for MATLAB

Fig. 7. Stability area for Example 2

Example 3

3-D examples are even nicer but, of course, more time consuming. Consider a three-parameter
uncertain polynomial

= + + + 2 2
1 2 3 0 1 1 3 3 1 1 2 2(, , ,) () () () ()p s q q q p s q q q q p s q q p s

with

= + + +

= − + +

= + −

2 3
0

2
1

2
2

() 2 4 3

 () 1.7 0.13 0.29

() 1.2 1.2 0.038

p s s s s

p s s s

p s s s

and ∈ −  1 2 3, , 20, 20q q q . When inputting the data

p0 = 2+4*s+3*s^2+s^3;

p1 = -1.7+0.13*s+0.29*s^2;

p2 = 1.2+1.2*s-0.038*s^2;

q1 = -20:.5:20;q2=q1;q3=q1;

62 New Functions in Version 2.5 of the Polynomial Toolbox

expr = 'p0+(q1+q1*q2)*q3*p1+(q1^2*q2^2)*p2';

the function called by

S3 = sarea(q1,q2,q3,expr,p0,p1,p2);

needs more than one hour on an average PC. The command

sareaplot(q1,q2,q3,S3)

results in Fig. 8. Such a 3-D plot can of course be zoomed or rotated by mouse in the standard
MATLAB manner.

Example 4

We consider another 3-D example of uncertainty structure

= + − + +2
1 2 3 0 1 3 1 2 3 2(, , ,) () ()p s q q q p q q p q q p

with

Fig. 8. Stability area for Example 3

sarea, sareaplot 63

The Polynomial Toolbox for MATLAB

= + + +

= − −

= − +

2 3
0

2
1

2
2

() 2 4 3

 () 0.5 1.5

() 0.02 2

p s s s s

p s s s

p s s s

∈ − ∈ − ∈          1 2 37,7 , 40,2 , 0,40q q q

We enter the data

p0 = 2+4*s+3*s^2+s^3;

p1 = 0.5-1.5*s-s^2;

p2 = 0.02-2*s+s^2;

expr = 'p0+(q1^2-q3)*p1+(q2+q3)*p2';

q1 = -7:.1:7; q2=-40:2; q3 = 0:0.5:40;

and run the macros

S4 = sarea(q1,q2,q3,expr,p0,p1,p2);

sareaplot(q1,q2,q3,S4)

to obtain Fig. 9.

The method is trivial: It directly runs a stability test step by step for each particular point of the
grid.

The macro sarea displays an error messages if

• There are not enough input arguments

• An argument corresponding to parameter or polynomial is not a named variable

• An invalid argument is encountered

• The expression string cannot be evaluated (in which case the error message is generated by
lasterr and hence its text may vary according to the situation encountered).

The macro sareaplot displays an error messages if

• An invalid argument or option is encountered

• There are more than three vectors representing uncertain parameters

• Input arguments have inconsistent dimensions

Algorithm

Diagnostics

64 New Functions in Version 2.5 of the Polynomial Toolbox

Fig. 9. Stability area for Example 4

isstable Stability test for a polynomial matrix

vset, vsetplot Value set plot for a parametric polynomial family

See also

sim2lmf, sim2rmf 65

The Polynomial Toolbox for MATLAB

sim2lmf, sim2rmf

LMF and RMF description of a SIMULINK model.

[N,D] = sim2lmf('model')

[N,D] = sim2lmf('model',X0)

[N,D] = sim2lmf('model',X0,U0)

[N,D] = sim2rmf('model')

[N,D] = sim2rmf('model',X0)

[N,D] = sim2rmf('model',X0,U0)

The command

[N,D] = sim2lmf('model')

returns the LMF description for the linearization of the SIMULINK scheme called 'model'.
The initial conditions for inputs and internal states of related observer-form realization by default
are supposed to be zero but may be specified as additional input arguments:

[N,D] = sim2lmf('model',X0)

[N,D] = sim2lmf('model',X0,U0)

Similarly, the commands

[N,D] = sim2rmf('model')

[N,D] = sim2rmf('model',X0)

[N,D] = sim2rmf('model',X0,U0)

compute the RMF description of the SIMULINK file 'model'.

These functions are new in the Polynomial Toolbox.

Consider the SIMULINK nonlinear model 'pendm' of an undamped simple pendulum depicted
in Fig. 10. The sim2lmf command may be employed to obtain its linearization:

[N,D] = sim2lmf('pendm')

Constant polynomial matrix: 1-by-1

N =

-1

D =

-9.8 - s^2

Purpose
Syntax

Description

Compatibility
Examples

66 New Functions in Version 2.5 of the Polynomial Toolbox

Without specifying any initial conditions we obtain the linearization around the lower stable posi-
tion of the pendulum. The linear model of an inverted pendulum can be found using the same
SIMULINK scheme by prescribing the initial angle ϕ π=0 :

[N,D] = sim2lmf('pendm', [pi 0])

Constant polynomial matrix: 1-by-1

N =

-1

D =

9.8 - s^2

The command sim2rmf will of course give the same result in this SISO example.

Fig. 10. SIMULINK model of a simple undamped pendulum

The standard SIMULINK command linmod is utilized along with the Polynomial Toolbox mac-
ros ss2lmf and ss2rmf.

The macros sim2lmf and si2rmf display error messages if

• The specified SIMULINK model does not exist

• The length of the initial conditions vector does not match the model dimension

• An invalid argument is encountered

Algorithm

Diagnostics

sim2lmf, sim2rmf 67

The Polynomial Toolbox for MATLAB

ss2lmf, ss2rmf State-space to LMF and RMF conversion

polblock Polynomial Toolbox block for SIMULINK

See also

68 New Functions in Version 2.5 of the Polynomial Toolbox

spherplot

Plot the value set of a polynomial family with a spherical uncertainty set and independent uncer-
tainty structure for a range of frequencies.

spherplot(p0,omega,r,W)

spherplot(p0,omega,r)

spherplot(p0,omega)

This is a tool for testing robust stability using the Zero Exclusion Condition. A family of polyno-
mials P = {p(⋅ ,q) : q∈ Q} is said to be spherical if p(⋅ ,q) has an independent uncertainty structure
and the uncertainty set Q is an ellipsoid. The command

spherplot(p0,omega,r,w)

plots the value sets for the spherical polynomial family, where p0 is a nominal polynomial,
omega is a vector of generalized frequencies, r is a robustness bound and weight is a vector of
diagonal entries of the weighting matrix W. If the family has an independent uncertainty structure
then the polynomial family can be expressed in the centered form

=

= +∑0
0

(,) ()
n

i
i

i

p s p s q sq

where the weighted Euclidian norm of the vector of the uncertain parameters is bounded by

≤2,W rq

The command

spherplot(p0,omega,r)

assumes that the weighting matrix w is the unit matrix. The command

spherplot(p0,omega)

assumes that the weighting matrix is the unit matrix and the robustness margin r equals 1.
The vector of uncertain parameters is then bounded by

≤2 1q

As with other tools based on the Zero Exclusion Condition it is necessary to make sure that there is
at least one stable member of the polynomial family. Also remember that if you enter the weight
parameter you only assign the vector of diagonal entries and not the whole matrix.

This function is new in the Polynomial Toolbox.

Purpose

Syntax

Description

Compatibility

spherplot 69

The Polynomial Toolbox for MATLAB

Fig. 11. Value set for Example 1

Example 1

Consider the uncertain polynomial

= + + + + + + +2 3
0 1 2 3(,) (0.5) (1) (2) (4)p s q q q s q s q s

with the uncertainty bound ≤2, 1
W

q and the weighting matrix ()= diag 2, 5, 3,1W , that is,

+ + + ≤2 2 2 2
0 1 2 32q 5 3 1q q q

Use the graphical method of the Zero Exclusion Principle to test for the robust stability of the
given uncertain polynomial. First we express the given polynomial in the centered form

=

= + + + +∑
3

2 3

0

(,) 0.5 6 4 i
i

i

p s s s s q sq

with the uncertainty bound unchanged. Now type

p0 = 0.5+s+6*s^2+4*s^3;

weight = [2,5,3,1];

r = 1; omega = 0:.01:1;

isstable(p0)

Examples

70 New Functions in Version 2.5 of the Polynomial Toolbox

ans =

1

The graphical representation of the value set for the given range of frequencies is generated by

spherplot(p0,omega,r,weight)

and shown in Fig. 11. It can be seen that the Zero Exclusion Condition is violated so we conclude
that the given polynomial family is not robustly stable.

Fig. 12. Value set for Example 2

Example 2

Similarly to the previous example, test the following polynomial [1, pp.268] for robust stability

() ()= + + + + + + +2 3
0 1 2 3(,) (2) 1.4 1.5 (1)p s q q s q s q sq

with the uncertain parameters subject to

≤
2

0.011q

We type

p0 = 2+1.4*s+1.5*s^2+s^3; r = 0.011; omega = 0:0.005:1.4;
isstable(p0)

spherplot 71

The Polynomial Toolbox for MATLAB

ans =

1

spherplot(p0,omega,r)

This results in Fig. 12. In this case, the origin is excluded from the value set and we conclude that
the polynomial family is robustly stable.

The value set at each frequency is characterized [1, p. 270] by an ellipse centered at nominal
()0p jω and with principal axis in the real direction having length

2 2
0 2 i

i
i even

R r w ω
 
 =   
 
∑

and principal axis in the imaginary direction having length

2 2
0 2 i

i
i odd

I r w ω
 
 =   
 
∑

The number r is a bound on the Euclidean norm of the vector of uncertain parameters, ω is a
frequency, and W a weighting matrix given by

()2 2 2
1 2, , , nW diag w w w= … .

[1] R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company.
New York, 1994.

The macro returns error messages if the input arguments are incompatible.

khplot Value set for an interval polynomial.

ptopplot Value set for a polytope of polynomials.

vsetplot Value set for polynomials with general uncertainty structure

Algorithm

References

Diagnostics

See also

72 New Functions in Version 2.5 of the Polynomial Toolbox

tsyp

Use the Tsypkin-Polyak function to determine the ∞A robustness margin for a continuous interval
polynomial.

R = tsyp(p0,w,epsilon)

R = tsyp(p0,w)

R = tsyp(p0)

R = tsyp(p0,[],epsilon)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,w,epsilon)

[R,W] = tsyp(p0,w)

[R,W] = tsyp(p0)

[R,W] = tsyp(p0,[],epsilon)

Given the nominal polynomial p0 the macro finds a robustness margin R such that the resulting
interval polynomial

() ε ε
=

= + −∑0
0

, () [,]
n

i
R i i

i

p s q p s R s

is robustly stable. The command

R = tsyp(p0,w,epsilon)

computes the robustness margin for an interval polynomial p0 at frequencies given by the vector w
and with scale factors given by the vector epsilon. The command

R = tsyp(p0,w)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors. The command

R = tsyp(p0)

implicitly uses the coefficients of the nominal polynomial p0 as scale factors and supplies its own
vector of frequencies. The command

R = tsyp(p0,[],epsilon)

uses the supplied scale factors but computes its own frequency vector . The commands

[R,W] = tsyp(p0)

and

Purpose

Syntax

Description

tsyp 73

The Polynomial Toolbox for MATLAB

[R,W] = tsyp(p0,[],epsilon)

return the computed vector of frequencies as the second output for possible use with the function
khplot.

If no output is specified then the graphical output of Tsypkin-Polyak function is generated. Also
shown is the robustness margin square, which is the largest possible square inscribed inside the
plot of the Tsypkin-Polyak function. Its size is the robustness margin R.

This function is new in the Polynomial Toolbox.

Example 1

We consider the interval polynomial family Pr with the nominal polynomial given by

= + + + + + +2 3 4 5 6() 676 1365 1019 420 104 15op s s s s s s s
and scaling factors ε0 = 676, ε1 = 682.5, ε2 = 509.5, ε3 = 210, ε4 = 52, ε5 = 15,
ε6 = 0. Find a robustness margin R such that the resulting interval polynomial is robustly stable.
Typing

p0 = pol([676 1365 1019 420 104 15 1],6);

w = 1:0.01:10;

epsilon = [676 682.5 509.5 210 52 15 0];

tsyp(p0,w,epsilon)

ans =

0.2344

results in Fig. 13. We obtain the robustness margin R = 0.2344, which may be viewed as size of
the largest possible square inscribed inside the plot of the Tsypkin-Polyak function.

Compatibility
Examples

74 New Functions in Version 2.5 of the Polynomial Toolbox

Fig. 13. Output for Example 1

Example 2 — simple feedback

The nominal pitch control system ([1], pp.101) is described in Fig. 14. Find the robustness margin
for K = 4.

0.25s+0.25*0.435

s +3.456s +3.457s +0.719s+0.04164 3 2

Vehicle

4

K

PitchPitch command

Fig. 14. Pitch control system

K = 4;

num = pol([0.25*0.435 0.25],1);

den = pol([.0416 .719 3.457 3.456 1],4);

p0 = den + K*num;

tsyp 75

The Polynomial Toolbox for MATLAB

[R,W] = tsyp(p0); R

R =

0.2741

pminus = p0 - R*p0;

pplus = p0 + R*p0;

khplot(pminus, pplus, W)

The output is shown in Fig. 15. Restricting the frequency range to lower frequencies (or zooming)
by typing

khplot(pminus, pplus, W(1:round(length(W)/3)))

leads to Fig. 16. Thus we have found the robustness margin R and now it is easy to find the uncer-
tainty bounds on the coefficients of the polynomial:

Qbounds = [pminus{:}' pplus{:}']

Qbounds =

0.3460 0.6072

1.2478 2.1902

2.5093 4.4047

2.5086 4.4034

0.7259 1.2741

If the coefficients remain within these intervals then the polynomial is guaranteed to be stable.

The algorithm is based on the Tsypkin-Polyak function GTP(ω) described in [1], pp.97. It finds a
robust margin R such that the condition ()ω

∞
>TPG R is satisfied for all frequencies (recall

that () (){ }∞ = ∈max Re , Im ,z s z z C and no degree drop occurs. It uses the standard MAT-
LAB minimization routine fminbnd.

R. Barmish, New Tools for Robustness of Linear Systems. Macmillan Publishing Company. New
York, 1994.

Since the quality of the result of the minimization routine depends considerably on the initial
guess, the proper choice of the frequency range is important. The program automatically validates
its result by the testing stability of the four Kharitonov polynomials. If these are not robustly stable
then the following error message appears:

Algorithm

References

Diagnostics

76 New Functions in Version 2.5 of the Polynomial Toolbox

-80 -60 -40 -20 0 20 40 60 80

-100

-80

-60

-40

-20

0

20

40

60

80

100

Real Axis

Im
a
g A
xi
s

Fig. 15. Output for Example 2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Real Axis

Im
a
g A
xi
s

Fig. 16. Zoomed output for Example 2

Warning: Resulting margin does not guarantee robust stability

of the interval polynomial. Run again with extended frequency

range and/or denser gridding.

Also use the graphical output to assess the acceptability of the result.

tsyp 77

The Polynomial Toolbox for MATLAB

khplot Value set for an interval polynomial.

kharit Return the Kharitonov polynomials

See also

78 New Functions in Version 2.5 of the Polynomial Toolbox

vset, vsetplot

Value set of a parametric polynomial

V = vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega][,qType])

vsetplot(V[,PlotType][,'new'])

This is another tool for robust stability testing with the help of the Zero Exclusion Condition. The
command

V = vset(q1,...,qm,ExpressionString,p0,p1,…,pn[,omega[,qType]])

computes the values at the generalized frequencies given by the vector ω of a family of polyno-
mials depending on m independent parameters. The parameter values that are selected are given by
the vectors …1, , mq q and the results are stored in a matrix V of complex numbers. The values at
the various frequencies are organized column wise.

The arguments …0 , , np p are given fixed polynomials that define the family. The uncertainty
structure is described by the string variable ExpressionString. This string is a MATLAB-
syntax expression for + +"0 1 0 1(,...,) (,...,)m n m na q q p a q q p that is composed of the parameter
names and the names of the fixed polynomials. The “coefficients” 1(,...,)i ma q q are given by any
MATLAB-syntax expression consisting of the parameter names acting here as scalar symbols.

Note that the input arguments representing both the parameters and the fixed polynomials must
already exist in the current workspace and, moreover, must be written using their names (rather
than values) in the function call. The use of the command is further explained in the examples
below.

Once the value matrix V is available one can plot it by typing
vsetplot(V[,PlotType][,'new'])

The plot consists of the sets ω()iV of values for the generalized frequencies. Depending on the
optional argument PlotType they can be composed of lines (default or PlotType =
'lines') or points (PlotType = 'points'). With the input string argument 'new' the
plot is displayed in a new window.

By default or with the string argument qType = 'r' the grid consists of combinations of en-
tries in the vectors …1, , mq q . When qType='e' the grid consists of l points defined by their
coordinates in m-dimensional space; all the …1, , mq q must be of the same length l..

This pair of macros tests robust stability of the polynomial family by the Zero Exclusion Condition
[1]. If the family contains a stable member and if the value set for all generalized frequencies on
the stability region boundary excludes the point 0 then the family is concluded to be robustly sta-

Purpose
Syntax

Description

Scope

vset, vsetplot 79

The Polynomial Toolbox for MATLAB

ble (stable for all parameters ranging given intervals). For more details, see [1] or another robust
control textbook.

To perform the robust stability test we first find a stable member in the family. Typically, the
nominal value is stable or we proceed by trial and error. Once a stable member is found we substi-
tute into the family several generalized frequencies from the stability boundary and plot the corre-
sponding value sets. It is important to use frequencies leading to value sets close to the point 0. If
none of the sets contains or touches the critical point then robust stability is verified.

To plot value sets for special uncertainty structures such as polytopic or even interval uncertainty
more efficient macros are available, in particular ptopplot and khplot, respectively.

These functions are new in the Polynomial Toolbox

To understand the use of command, go through the following simple examples.

Example 1: Continuous-time case

Consider an uncertain polynomial

= + + +1 2 0 1 1 2 2 1 2 12(, ,) () () () ()p s q q p s q p s q p s q q p s
composed of four fixed polynomials

= + + + +

= + + +

= + + +

= + +

2 3 4
0

2 3
1

2 3
2

2
12

1.853 3.164 2.871 2.56

3.773 4.841 2.06

1.985 1.561 1.561

4.032 1.06

p s s s s

p s s s

p s s s

p s s

and check its robust stability for ∈   1 0,1q and ∈   2 0, 3q . To this end, first enter the data

p0 = pol([1.853 3.164 2.871 2.56 1],4);

p1 = pol([3.773 4.841 2.06 1],3);

p2 = pol([1.985 1.561 1.561 1],3);

p12 = pol([4.032 1.06 1],2);

describe the uncertainty structure

expr = 'p0+q1*p1+q2*p2+q1*q2*p12'

and define a reasonable grid for the parameter intervals

q1 = 0:1/50:1; q2=0:3/50:3;

As the polynomials are of continuous-time nature it is necessary to plot value sets for several criti-
cal frequencies on the imaginary axis. Hence, choose ωi = 1.3, 1.4, 1.6, 1.6 and type

Compatibility
Examples

80 New Functions in Version 2.5 of the Polynomial Toolbox

V = vset(q1,q2,expr,p0,p1,p2,p12,j*[1.3:.1:1.6]);

vsetplot(V,'points')

to obtain the plot of Fig. 17. Note that the value sets are not convex. This typically happens when-
ever the uncertainty structure is multilinear or more complex.

As one of the value sets (that for ω = 1.4i) seems to include the critical point 0 we zoom the plot
in to that of Fig. 18 to see more details. It is evident that ∈0 (1.4)V and, hence, the family is not
robustly stable.

Fig. 17. Value set for Example 1

Example 2: Discrete-time case

Now consider a family of discrete-time polynomials with quite complicated uncertainty
− − − − −= + − +1 1 1 1 2 1(, , ,) () sin() () cos() () ()p z k l m e z k f z k kg z l h z

where
− − − −

−

− −

− −

= − + −

=

=

=

1 1 1 1

1

1 1

1 2

() (1.5)(2)(2)

() 1

()

()

e z z z z

f z

g z z

h z z

vset, vsetplot 81

The Polynomial Toolbox for MATLAB

and ∈ −  , , 1,1k l m . Here the data to be entered are

e = (zi-1.5)*(zi+2)*(zi-2);f=1; g=zi; h=zi^2;

uncrty = 'e+sin(k)*f-cos(m)*k*g+(l^2)*h';

and, say,

k = -1:.1:1; l = k; m = k;

Fig. 18. Zoomed plot

Before using the Zero Exclusion Condition to test robust stability we must check that the family
contains at least one stable member. Indeed, the nominal polynomial − −=1 1(,0,0,0) ()p z e z is
stable:

isstable(e)

ans =

1

Now we evaluate and plot value sets at 40 generalized frequencies evenly spread around unit cir-
cle:

V = vset(k,l,m,uncrty,e,f,g,h,exp(j*(0:2*pi/40:2*pi)));

vsetplot(V)

82 New Functions in Version 2.5 of the Polynomial Toolbox

and obtain the picture of Fig. 19. As all the sets are far enough to the right of the critical point
robust stability is verified.

Example 3: Incorrect calls

The user must not forget about calling the function with named variable arguments.

Even if the parameters

q0 = 1:5;

already exist in the workspace it must be represented by its name. The following call is definitely
incorrect

Fig. 19. Value set for Example 2

vset(1:5,'q0*p',p,j)

??? Error using ==> vset

Undefined function or variable 'q0'.

The method is quite easy. The overall picture is composed of the value sets for the generalized
frequencies. Each set is obtained by substituting the frequencies into the uncertainty formula for all
parameter values achieved by gridding the parameter set.

Algorithm

vset, vsetplot 83

The Polynomial Toolbox for MATLAB

R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company. New
York, 1994.

The macro vset displays an error message if

� The set of generalized frequencies is not a non-empty vector

� There are not enough input arguments

� The expression string cannot be correctly evaluated. Here the error message is returned by
lasterr and hence its text may vary according to the inconsistency encountered

The macro vsetplot displays an error message if

• The value set matrix is not a non-empty 2-dimensional double.

• An inappropriate input string argument is used.

khplot Value set for an interval polynomial.

ptopplot Value set for a polytope of polynomials.

References

Diagnostics

See also

84 New Functions in Version 2.5 of the Polynomial Toolbox

A

Algebraic Riccati equation33
generalized..33

axxab ...10

B

Bug fixes ...7

C

cgivens1...10
Clements form...14
clements1 ...14
Compatibility...5
complete..17
Complete to unimodular17

D

Demos ...9
Descriptor system......................................27

regularization..27
Display

formats..7
polynomial matrix47

Documentation ..4
dssh2...20
dssreg ..27

E

Eigenstructure assignment.........................53

F

Format polynomial matrix.........................48

G

gare ...33

H

h2 ..36
H2 optimization8; 36
H2 problem..20

descriptor solution20
polynomial solution36

I

Installation ...1
instructions..1
Unix ..2
Windows ...1

Interval polynomials8
isstable ...10

J

jury...45
Jury matrix...45

L

LaTeX
convert polynomial matrix to................50
formatting ...8

Linear-quadratic regulator design..............56

N

Numerical routines9

P

pdisp ..47
pformat ..48
pol2tex ...50
Polynomial matrix functions9
prand..10
psseig ...53
psslqr ...56

Index

Index 85

The Polynomial Toolbox for MATLAB

R

reverse ...10
Robust stability area60
Robustness margin74
root2pol ...11

S

sarea...60
sareaplot ..60
Shows ..9
sim2lmf ...67
sim2rmf ...67
Simulink ..4; 8

LMF description67
RMF description...................................67

spherplot ..70
stabint ..11
State space systems8

T

tsyp ..74

Tsypkin-Polyak function74

U

Unimodular matrix17
Updates..9
Upgrading ..3

instructions..3
Unix ..3
Windows ...3

V

Value set
parametric polynomial80
sperical uncertainty70

vset...80
vsetplot ..80

W

What is new ...7

	Title page
	Contents
	Introduction
	How to use this document
	References to other documents
	New installation instructions
	Upgrading instructions
	Documentation
	A note for SIMULINK 3 users on Windows platforms
	Compatibility with MATLAB version 6

	What is New in Version 2.5?
	Overview
	Bug fixes
	Improved algorithms and other internal changes
	New display formats
	New functions
	Miscellaneous updates and modifications

	New Functions in Version 2.5 of the
 Polynomial Toolbox
	clements1
	complete
	dssh2
	dssreg
	gare
	h2
	jury
	pdisp
	pformat rootr, pformat rootc
	pol2tex
	psseig
	psslqr
	sarea, sareaplot
	sim2lmf, sim2rmf
	spherplot
	tsyp
	vset, vsetplot

	Index

